Three new neutral and ionic phosphorescent iridium(III) complexes were successfully prepared using 1-(6-methoxynaphthalen-2-yl)isoquinoline as the main ligand, while the auxiliary ligand was 2-(2-1H-imidazolyl)pyridine. Three complexes (Ir1, Ir2, Ir3) showed red emission, peaking at 610, 609, and 615 nm, respectively, and they exhibited good solubility and excellent photophysical properties in different solvents, which is suitable to prepare organic light-emitting diodes (OLEDs) by solution method. Among the three OLEDs prepared by iridium(III) complexes using the solution method, the device based on Ir2 possessed better electroluminescent properties, and its maximum brightness, current efficiency (CE), power efficiency (PE), and the maximum external quantum efficiency (EQE) were 507.
View Article and Find Full Text PDFTwo novel ionic red/near-infrared Ir(III) complexes (Ir1 and Ir2) were reasonably designed and prepared using 2-(1-isoquinolinyl)-9,10-anthraquinone as the main ligand and 4,4'-dimethyl-2,2'-bipyridyl and 4,4'-dimethoxy-2,2'-bipyridyl as the auxiliary ligands, respectively. Both complexes showed bright phosphorescence in solution (peak at 618 nm with a shoulder at 670 nm). Interestingly, the phosphorescence peak of two Ir(III) complexes showed a blue-shift of about 36 nm after being ground.
View Article and Find Full Text PDFTwo novel neutral phosphorescent iridium(III) complexes (Ir1 and Ir2) were rationally designed and synthesized with high yields using 10,11,12,13-tetrahydrodibenzo[a,c]phenazine as the main ligand. The two complexes showed bright-red phosphorescence (625 nm for Ir1, and 620 nm for Ir2, in CHCl), high-luminescence quantum efficiency (0.32 for Ir1, and 0.
View Article and Find Full Text PDFTwo new and efficient cationic yellow-emissive Ir (III) complexes (Ir1 and Ir2) are rationally designed by using 2-(4-chloro-3-(trifluoromethyl)phenyl)-4-methylquinoline as the main ligand, and, respectively, 4,4'-dimethyl-2,2'-bipyridyl and 4,4'-dimethoxy-2,2'-bipyridyl as the ancillary ligands. Both complexes show enhanced phosphorescence (546 nm with 572 nm as shoulder and high phosphorescent quantum efficiency in solution, which is in favor of efficient solution-processed phosphorescent organic light-emitting diodes. Compared with Ir2, the Ir1-based device displays excellent device performance, with maximum external quantum efficiency, current efficiency, and power efficiency of up to 7.
View Article and Find Full Text PDF