Purpose: To investigate the osteogenic potential of human embryonic stem cell-derived exosomes (hESC-Exos) and their effects on the differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs).
Methods: hESC-Exos were isolated and characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting. hUCMSCs were cultured with hESC-Exos to assess osteogenic differentiation through alizarin red staining, quantitative PCR (qPCR), and Western blotting.
Secondary structure prediction is a key step in understanding protein function and biological properties and is highly important in the fields of new drug development, disease treatment, bioengineering, etc. Accurately predicting the secondary structure of proteins helps to reveal how proteins are folded and how they function in cells. The application of deep learning models in protein structure prediction is particularly important because of their ability to process complex sequence information and extract meaningful patterns and features, thus significantly improving the accuracy and efficiency of prediction.
View Article and Find Full Text PDFBackground: Bone defects, resulting from substantial bone loss that exceeds the natural self-healing capacity, pose significant challenges to current therapeutic approaches due to various limitations. In the quest for alternative therapeutic strategies, bone tissue engineering has emerged as a promising avenue. Notably, excretory proteins from Toxoplasma gondii (TgEP), recognized for their immunogenicity and broad spectrum of biological activities secreted or excreted during the parasite's lifecycle, have been identified as potential facilitators of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs).
View Article and Find Full Text PDFOsteoporosis (OP) is the most common bone disorder worldwide, especially in postmenopausal women. However, many OP drugs are not suitable for long term use due to major adverse effects. Therefore, there is an urgent need to identify more effective and safe therapeutic drugs.
View Article and Find Full Text PDFexcretory/secretory proteins (TgESPs) are a group of proteins secreted by the parasite and have an important role in the interaction between the host and (). They can participate in various biological processes in different cells and regulate cellular energy metabolism. However, the effect of TgESPs on energy metabolism and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) has remained elusive.
View Article and Find Full Text PDFOsteosarcoma is prone to metastasis and has a low long-term survival rate. The drug treatment of osteosarcoma, side effects of treatment drugs, and prognosis of patients with lung metastasis continue to present significant challenges, and the efficacy of drugs used in the treatment of osteosarcoma remains low. The development of new therapeutic drugs is urgently needed.
View Article and Find Full Text PDFDiabetic wound is one of the most common and serious complications of diabetes, which is characterized by abnormal number and quality of wound repair related cells. Previous studies have shown that human endothelial progenitor cells derived exosomes (EPCs-EXO) can promote diabetic wound healing through modulating vascular endothelial cell function. The purpose of this study was to investigate the biological effects and molecular mechanisms of EPCs-EXO on diabetic wound healing.
View Article and Find Full Text PDFDocosahexaenoic acid (DHA) has been reported potentiate osteogenic differentiation, while Docosapentaenoic acid (DPA), another Omega-3 fatty acid, its contribution to the osteogenic differentiation of human bone-marrow-derived mesenchymal stromal cells (hBMSCs) is not entirely elucidated. The Alizarin Red S (ARS) staining and the expression of osteogenesis‑associated genes were analyzed during osteogenic induction by DPA. Then, bioinformatics analysis and dual luciferase reporter assays were investigated to confirm the interactions between miR-9-5p and alkaline phosphatase (ALP).
View Article and Find Full Text PDFToxoplasma gondii, an intracellular protozoan parasite that infects one-third of the world's population, has been reported to hijack host cell apoptotic machinery and promote either an anti- or proapoptotic program depending on the parasite virulence and load and the host cell type. However, little is known about the regulation of human FHs 74 small intestinal epithelial cell viability in response to T. gondii infection.
View Article and Find Full Text PDFZhonghua Wei Zhong Bing Ji Jiu Yi Xue
April 2020
Objective: To analyze the epidemiological characteristics and clinical features of the patients with coronavirus disease 2019 (COVID-19), so as to provide basis for clinical diagnosis.
Methods: The epidemiology, clinical symptoms, laboratory and radiologic data of 23 patients with COVID-19 admitted to the Fifth People's Hospital of Xinyang City from January 22nd to January 29th, 2020 were retrospectively analyzed.
Results: There was 23 patients with COVID-19, with 15 men and 8 women, and the median age was 46.
Various needle trap devices (NTDs) with different designs have been developed during the past decade. A theoretical model on the fundamentals of the NTD was recently proposed, which employed the theory of frontal (gas-solid) chromatography to describe the sampling process. In the current work, different types of sorbent particles with different dimensions were packed into the needle as the adsorbent.
View Article and Find Full Text PDFBackground: Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment.
View Article and Find Full Text PDFA series of conformationally restrained epothilone analogues with a short bridge between the methyl groups at C6 and C8 was designed to mimic the binding pose assigned to our recently reported EpoA-microtubule binding model. A versatile synthetic route to these bridged epothilone analogues has been successfully devised and implemented. Biological evaluation of the compounds against A2780 human ovarian cancer and PC3 prostate cancer cell lines suggested that the introduction of a bridge between C6-C8 reduced potency by 25-1000 fold in comparison with natural epothilone D.
View Article and Find Full Text PDFThe total synthesis of hirsutellones A (1), B (2), and C (3) has been achieved through a bioinspired late-stage sequence starting from advanced intermediate 6. The sequence proceeded via labile intermediate 17,1'-dehydrohirsutellone B (5) and delivered, in addition to the natural products (1-3), hirsutellone analogue 1',2',17-epi-hirsutellone C (1',2',17-epi-3).
View Article and Find Full Text PDFThe C-X-C chemokine receptor type 4 (CXCR4)/stromal cell derived factor-1 (SDF-1 or CXCL12) interaction and the resulting cell signaling cascade play a key role in metastasis and inflammation. On the basis of the previously published CXCR4 antagonist 5 (WZ811), a series of novel nonpeptidic anti-CXCR4 small molecules have been designed and synthesized to improve potency. Following a structure-activity profile around 5, more advanced compounds in the N,N'-(1, 4-phenylenebis(methylene)) dipyrimidin-2-amines series were discovered and shown to possess higher CXCR4 binding potential and specificity than 5.
View Article and Find Full Text PDFAnal Chim Acta
September 2010
The needle trap device (NTD) is an extraction trap that contains a sorbent inside a small needle, through which fluid can be actively drawn into and out of by a gas-tight syringe or pump, or analytes can be introduced passively to the trap by diffusion. The needle trap (NT) is a potentially solventless sampling technique/sample preparation and introduction device. Both fluid-borne analytes and particles can be trapped inside the needle and then adsorbed analytes are desorbed in an inlet of analytical instrument and introduced for identification and quantification.
View Article and Find Full Text PDFA conformationally restrained epothilone A analogue (3) with a short bridge between methyl groups at C6 and C8 was designed and synthesized. Preliminary biological evaluation indicates 3 to be only weakly active (IC50 = 8.5 microM) against the A2780 human ovarian cancer cell line.
View Article and Find Full Text PDFIn light of a proposed molecular mechanism for the C-X-C chemokine receptor type 4 (CXCR4) antagonist 1 (AMD3100), a template with the general structure 2 was designed, and 15 was identified as a lead by means of an affinity binding assay against the ligand-mimicking CXCR4 antagonist 3 (TN14003). Following a structure-activity profile around 15, the design and synthesis of a series of novel small molecular CXCR4 antagonists led to the discovery of 32 (WZ811). The compound shows subnanomolar potency (EC50 = 0.
View Article and Find Full Text PDFMeasles virus (MV) is one of the most infectious pathogens known. Despite the existence of a vaccine, over 500,000 deaths/year result from MV or associated complications. Anti-measles compounds could conceivably reverse these statistics.
View Article and Find Full Text PDF