Publications by authors named "Weiqi Leng"

Bismuth vanadate (BiVO) is a common photocatalyst for water remediation, yet its powder form renders difficult to disperse, recycle, and regenerate, limiting photodegradation efficiency. In this study, a lignocellulosic-templated BiVO photocatalyst was fabricated from BiVO precursor and lignocellulose using a simple vacuum impregnation (w/o heat treatment on wood template). Results showed that the modified template retained original hierarchical structure with an increased specific surface area and reduced hemicellulose content, leading to a promising template for uniform distribution of BiVO.

View Article and Find Full Text PDF
Article Synopsis
  • Excessive iron (Fe) in drinking water poses a health risk, and traditional detection methods are often too complex, expensive, or harmful to the environment.
  • Researchers extracted a fluorescent compound from Pterocarpus wood and optimized its intensity using response surface methodology, creating a new high-intensity probe for detecting Fe.
  • The resulting probe is cost-effective, operates well in actual water samples, and effectively detects Fe concentrations in the range of 2.7 μM to 8.0 μM, potentially offering a more sustainable solution for water quality monitoring.
View Article and Find Full Text PDF

Wood is a hygroscopic material that responds to the moisture changes of the surrounding environment through swelling and shrinkage, making it dimensionally unstable. Here, we introduce a facile metal-ion-modification (MIM) approach to enhance the dimensional stability of wood. The MIM process involved swelling the wood samples with aqueous metal ion solutions and drying.

View Article and Find Full Text PDF

Cracking, warping, and decaying stemming from wood's poor dimensional stability and durability are the most annoying issues of natural wood. There is an urgent need to address these issues, of which, sustainable and green chemical treatments are favorably welcomed. Herein, we developed a facile method through the incorporation of environmentally friendly biopolymer lignin into wood cells for wood dimensional stability and durability enhancement.

View Article and Find Full Text PDF

Natural fiber composites are receiving more and more attention because of their greenness and low cost. Among natural fibers, bamboo is characterized by fast growth, a short cultivation period, high strength and good toughness, and is one of the strongest natural fibers in the world. A bamboo-fiber-reinforced polymer composite (BFRPC) has the characteristics of high mechanical strength, low density, degradability, etc.

View Article and Find Full Text PDF

Wood is an insulator material, using its porous structure to endow it with efficient microwave absorption and broaden its application range is still a major challenge. Here, wood-based FeO composites with excellent microwave absorption properties and high mechanical strength were prepared by alkaline sulfite method, in-situ co-precipitation method and compression densification method. The results showed that the magnetic FeO was densely deposited in the wood cells, and the prepared wood-based microwave absorption composites had both high electrical conductivity, magnetic loss, excellent impedance matching performance and attenuation performance, as well as effective microwave absorption properties.

View Article and Find Full Text PDF

Fast-growing wood has become a major source of materials for the wood industry in recent years, but defects have limited its use. Therefore, modification is urgently needed for the more efficient application of wood products. In this study, a 30 to 50% solution of furfuryl alcohol (FA) was impregnated into Douglas fir sapwood.

View Article and Find Full Text PDF

The development of lignin-based anticorrosive epoxy coatings for steel protection is beneficial for both alleviating the fossil resource depletion and value-added utilization of lignin but remains a challenge due to the inherent heterogeneous structure of lignin. Here, we selectively extract the low molecular weight (MW) fraction of a crop residue-derived enzymatic hydrolysis lignin (EHL) through a bioethanol fractionation process and prepare epoxy resin by direct epoxidation of the bioethanol fractionated lignin (BFL). The coatings are then fabricated using 20-100 wt% of BFL-based epoxy resin (LEp) as the commercial epoxy resin substitute.

View Article and Find Full Text PDF

With the increasing demands on sustainability in the material science and engineering landscape, the use of wood, a renewable and biodegradable material, for new material development has drawn increasing attentions in the materials science community. To promote the development of new wood-based materials, it is critical to understanding not only wood's hierarchical structure from molecule to macroscale level, but also the interactions of wood with other materials and chemicals upon modification and functionalization. In this review, we discuss the recent advances in the Raman imaging technique, a new approach that combines spectroscopy and microscopy, in wood characterization and structural evolution monitoring during functionalization.

View Article and Find Full Text PDF

In this study, traditional polyol was partially replaced with green, environmentally friendly cellulose nanofibrils (CNF). The effects of CNF on the performance of CNF-reinforced polyurethane foam nanocomposites were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and a compression test. The results showed that the introduction of CNF into the polyurethane matrix not only created stronger urethane bonding between the hydroxyl groups in the cellulose chain and isocyanate groups in polymethylene polyphenylisocyanate, but also developed an additional filler⁻matrix interaction between CNF and polyurethane.

View Article and Find Full Text PDF

Kraft lignin (KL) was thermally treated at 500 to 1000 °C in an inert atmosphere. Carbon nanostructure parameters of thermally treated KL in terms of amorphous carbon fraction, aromaticity, and carbon nanocrystallites lateral size (), thickness (), and interlayer space () were analyzed quantitatively using X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy. Experimental results indicated that increasing temperature reduced amorphous carbon but increased aromaticity in thermally treated KL materials.

View Article and Find Full Text PDF

The effects of temperature and copper catalyst concentration on the formation of graphene-encapsulated copper nanoparticles (GECNs) were investigated by means of X-ray diffraction, Fourier transform infrared spectroscopy-attenuated total reflectance, and transmission electron microscopy. Results showed that higher amounts of copper atoms facilitated the growth of more graphene islands and formed smaller size GECNs. A copper catalyst facilitated the decomposition of lignin at the lowest temperature studied (600 °C).

View Article and Find Full Text PDF