Neural Ordinary Differential Equations (ODEs) are a promising approach to learn dynamical models from time-series data in science and engineering applications. This work aims at learning neural ODEs for stiff systems, which are usually raised from chemical kinetic modeling in chemical and biological systems. We first show the challenges of learning neural ODEs in the classical stiff ODE systems of Robertson's problem and propose techniques to mitigate the challenges associated with scale separations in stiff systems.
View Article and Find Full Text PDFJ Phys Chem A
September 2021
The recently developed physics-informed neural network (PINN) has achieved success in many science and engineering disciplines by encoding physics laws into the loss functions of the neural network such that the network not only conforms to the measurements and initial and boundary conditions but also satisfies the governing equations. This work first investigates the performance of the PINN in solving stiff chemical kinetic problems with governing equations of stiff ordinary differential equations (ODEs). The results elucidate the challenges of utilizing the PINN in stiff ODE systems.
View Article and Find Full Text PDFJ Phys Chem A
February 2021
Chemical reactions occur in energy, environmental, biological, and many other natural systems, and the inference of the reaction networks is essential to understand and design the chemical processes in engineering and life sciences. Yet, revealing the reaction pathways for complex systems and processes is still challenging because of the lack of knowledge of the involved species and reactions. Here, we present a neural network approach that autonomously discovers reaction pathways from the time-resolved species concentration data.
View Article and Find Full Text PDF