Publications by authors named "Weining Qin"

Given the suboptimal emulsification performance and the potential for secondary pollution posed by existing demulsifiers, a facile and highly efficient fluorinated magnetic demulsifier (FeN@F) was synthesized a one-step approach using fluorinated polyether and iron nitride as raw materials.The morphology and structure of the demulsifier were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The results confirm a successful fluoropolyether coating on the surface of iron nitride.

View Article and Find Full Text PDF

Based on the excellent adsorption properties of carbon materials, a new magnetic nanodemulsifier was prepared in this study. First, carbon nanotubes were oxidized using a solvothermal method. Then, FeO was combined with oxidized carbon nanotubes using a one-pot method, and then grafted onto fluorine-containing polyether to prepare a magnetic composite demulsifier (FeO@C-F) with good demulsification properties.

View Article and Find Full Text PDF

The presence of organic impurities hinders the resource utilization of industrial waste salt (IWS). In this study, pyrolysis treatment was chosen to remove these organic impurities. The optimal process parameters for the pyrolysis of organic impurities were as follows: a temperature of 500 °C and a holding time of 20 min.

View Article and Find Full Text PDF

Industrial waste salt is classified as hazardous waste to the environment. The organic impurity and its occurrence in industrial waste salt affect the salt resource utilization. In this paper, composition quantitative analysis, XRD, TG-DSC, SEM/FIB-SEM coupled with EDS, FTIR, XPS and GC-Ms were chosen to investigate the organic impurity and its occurrence in industrial waste salt.

View Article and Find Full Text PDF

Arsenic contamination has been a major problem in copper slag utilization. Arsenic is easily incorporated into the silicate-based matrix, making the arsenic difficult to volatilize. In this study, pyrite was selected to depolymerize the matrix structure and volatilize the glassy arsenic by sulfide-reduction-volatilization reaction.

View Article and Find Full Text PDF