Publications by authors named "Weingarten-Gabbay S"

Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames.

View Article and Find Full Text PDF

mRNA translation is a fundamental process for life. Selection of the translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for mRNA decoding. Studies in vertebrate mRNAs discovered that a purine at -3 and a G at +4 (where A of the AUG initiator codon is numbered + 1), promote TIS recognition.

View Article and Find Full Text PDF

Unveiling the complete proteome of viruses is crucial to our understanding of the viral life cycle and interaction with the host. We developed Massively Parallel Ribosome Profiling (MPRP) to experimentally determine open reading frames (ORFs) in 20,170 designed oligonucleotides across 679 human-associated viral genomes. We identified 5,381 ORFs, including 4,208 non-canonical ORFs, and show successful detection of both annotated coding sequences (CDSs) and reported non-canonical ORFs.

View Article and Find Full Text PDF

Targeted synthetic vaccines have the potential to transform our response to viral outbreaks; yet the design of these vaccines requires a comprehensive knowledge of viral immunogens, including T-cell epitopes. Having previously mapped the SARS-CoV-2 HLA-I landscape, here we report viral peptides that are naturally processed and loaded onto HLA-II complexes in infected cells. We identified over 500 unique viral peptides from canonical proteins, as well as from overlapping internal open reading frames (ORFs), revealing, for the first time, the contribution of internal ORFs to the HLA-II peptide repertoire.

View Article and Find Full Text PDF

Immunopeptidome profiling of infected cells is a powerful technique for detecting viral peptides that are naturally processed and loaded onto class I human leukocyte antigens (HLAs-I). Here, we provide a protocol for preparing samples for immunopeptidome profiling that can inactivate enveloped viruses while still preserving the integrity of the HLA-I complex. We detail steps for lysate preparation of infected cells followed by HLA-I immunoprecipitation and virus inactivation.

View Article and Find Full Text PDF

Death associated protein 5 (DAP5/eIF4G2/NAT1) is a member of the eIF4G translation initiation factors that has been shown to mediate noncanonical and/or cap-independent translation. It is essential for embryonic development and for differentiation of embryonic stem cells (ESCs), specifically its ability to drive translation of specific target mRNAs. In order to expand the repertoire of DAP5 target mRNAs, we compared ribosome profiles in control and DAP5 knockdown (KD) human ESCs (hESCs) to identify mRNAs with decreased ribosomal occupancy upon DAP5 silencing.

View Article and Find Full Text PDF

The human genome encodes tens of thousands circular RNAs (circRNAs) with mostly unknown functions. Circular RNAs require internal ribosome entry sites (IRES) if they are to undergo translation without a 5' cap. Here, we develop a high-throughput screen to systematically discover RNA sequences that can direct circRNA translation in human cells.

View Article and Find Full Text PDF

T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines.

View Article and Find Full Text PDF

Immunotherapies have emerged to treat diseases by selectively modulating a patient's immune response. Although the roles of T and B cells in adaptive immunity have been well studied, it remains difficult to select targets for immunotherapeutic strategies. Because human leukocyte antigen class II (HLA-II) peptides activate CD4+ T cells and regulate B cell activation, proliferation, and differentiation, these peptide antigens represent a class of potential immunotherapy targets and biomarkers.

View Article and Find Full Text PDF

T cell-mediated immunity may play a critical role in controlling and establishing protective immunity against SARS-CoV-2 infection; yet the repertoire of viral epitopes responsible for T cell response activation remains mostly unknown. Identification of viral peptides presented on class I human leukocyte antigen (HLA-I) can reveal epitopes for recognition by cytotoxic T cells and potential incorporation into vaccines. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two human cell lines at different times post-infection using mass spectrometry.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. To understand the pathogenicity and antigenic potential of SARS-CoV-2 and to develop therapeutic tools, it is essential to profile the full repertoire of its expressed proteins. The current map of SARS-CoV-2 coding capacity is based on computational predictions and relies on homology with other coronaviruses.

View Article and Find Full Text PDF

Despite much research, our understanding of the architecture and -regulatory elements of human promoters is still lacking. Here, we devised a high-throughput assay to quantify the activity of approximately 15,000 fully designed sequences that we integrated and expressed from a fixed location within the human genome. We used this method to investigate thousands of native promoters and preinitiation complex (PIC) binding regions followed by in-depth characterization of the sequence motifs underlying promoter activity, including core promoter elements and TF binding sites.

View Article and Find Full Text PDF

Despite extensive research, the sequence features affecting microRNA-mediated regulation are not well understood, limiting our ability to predict gene expression levels in both native and synthetic sequences. Here we employed a massively parallel reporter assay to investigate the effect of over 14,000 rationally designed 3' UTR sequences on reporter construct repression. We found that multiple factors, including microRNA identity, hybridization energy, target accessibility, and target multiplicity, can be manipulated to achieve a predictable, up to 57-fold, change in protein repression.

View Article and Find Full Text PDF

Translation of mRNAs through Internal Ribosome Entry Sites (IRESs) has emerged as a prominent mechanism of cellular and viral initiation. It supports cap-independent translation of select cellular genes under normal conditions, and in conditions when cap-dependent translation is inhibited. IRES structure and sequence are believed to be involved in this process.

View Article and Find Full Text PDF

Translational regulation is a critical step in the production of proteins from genomic material in both human and viruses. However, unlike other steps of the central dogma, such as transcriptional regulation, little is known about the cis-regulatory elements involved. In a recent study we devised a high-throughput bicistronic reporter assay for the discovery and the characterization of thousands of novel Internal Ribosome Entry Sites (IRESs) in human and hundreds of viral genomes.

View Article and Find Full Text PDF

To investigate gene specificity at the level of translation in both the human genome and viruses, we devised a high-throughput bicistronic assay to quantify cap-independent translation. We uncovered thousands of novel cap-independent translation sequences, and we provide insights on the landscape of translational regulation in both humans and viruses. We find extensive translational elements in the 3' untranslated region of human transcripts and the polyprotein region of uncapped RNA viruses.

View Article and Find Full Text PDF

Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates.

View Article and Find Full Text PDF

A new study detects unstable nascent RNAs and uncovers thousands of transcription initiation sites in promoters and enhancers. Detailed analysis shows that these initiation sites have a similar architecture and that they are differentiated by post-transcriptional regulation rather than transcription initiation.

View Article and Find Full Text PDF

Eukaryotes employ combinatorial strategies to generate a variety of expression patterns from a relatively small set of regulatory DNA elements. As in any other language, deciphering the mapping between DNA and expression requires an understanding of the set of rules that govern basic principles in transcriptional regulation, the functional elements involved, and the ways in which they combine to orchestrate a transcriptional output. Here, we review the current understanding of various grammatical rules, including the effect on expression of the number of transcription factor binding sites, their location, orientation, affinity and activity; co-association with different factors; and intrinsic nucleosome organization.

View Article and Find Full Text PDF

Translational regulation of the p53 mRNA can determine the ratio between p53 and its N-terminal truncated isoforms and therefore has a significant role in determining p53-regulated signaling pathways. Although its importance in cell fate decisions has been demonstrated repeatedly, little is known about the regulatory mechanisms that determine this ratio. Two internal ribosome entry sites (IRESs) residing within the 5'UTR and the coding sequence of p53 mRNA drive the translation of full-length p53 and Δ40p53 isoform, respectively.

View Article and Find Full Text PDF