As the application of the Global Navigation Satellite System (GNSS) continues to expand, its stability and safety issues are receiving more and more attention, especially the interference problem. Interference reduces the signal reception quality of ground terminals and may even lead to the paralysis of GNSS function in severe cases. In recent years, Low Earth Orbit (LEO) satellites have been highly emphasized for their unique advantages in GNSS interference detection, and related commercial and academic activities have increased rapidly.
View Article and Find Full Text PDFSatellite navigation signals are feeble when they reach the ground, so they are vulnerable to attacks from outside interference signals. By emitting spoofing interference signals similar to real satellite signals, spoofing interference can make receivers give wrong navigation, position, and time information, and it is challenging to detect. This seriously affects the safe use of GNSS; therefore, it is essential to identify spoofing interference signals quickly and accurately.
View Article and Find Full Text PDFScientificWorldJournal
April 2016
The global ionospheric maps (GIMs), generated by Jet Propulsion Laboratory (JPL) and Center for Orbit Determination in Europe (CODE) during a period over 13 years, have been adopted as the primary source of data to provide global ionospheric correction for possible single frequency positioning applications. The investigation aims to assess the performance of new NeQuick model, NeQuick 2, in predicting global total electron content (TEC) through ingesting the GIMs data from the previous day(s). The results show good performance of the GIMs-driven-NeQuick model with average 86% of vertical TEC error less than 10 TECU, when the global daily effective ionization indices (Az) versus modified dip latitude (MODIP) are constructed as a second order polynomial.
View Article and Find Full Text PDF