The integration of deep neural networks with the variational Monte Carlo (VMC) method has marked a substantial advancement in solving the Schrödinger equation. In this work we enforce spin symmetry in the neural-network-based VMC calculation using a modified optimization target. Our method is designed to solve for the ground state and multiple excited states with target spin symmetry at a low computational cost.
View Article and Find Full Text PDFQuantum imaginary time evolution (QITE) is one of the promising candidates for finding the eigenvalues and eigenstates of a Hamiltonian on a quantum computer. However, the original proposal suffers from large circuit depth and measurements due to the size of the Pauli operator pool and Trotterization. To alleviate the requirement for deep circuits, we propose a time-dependent drifting scheme inspired by the qDRIFT algorithm [Campbell, E.
View Article and Find Full Text PDFDiffusion Monte Carlo (DMC) based on fixed-node approximation has enjoyed significant developments in the past decades and become one of the go-to methods when accurate ground state energy of molecules and materials is needed. However, the inaccurate nodal structure hinders the application of DMC for more challenging electronic correlation problems. In this work, we apply the neural-network based trial wavefunction in fixed-node DMC, which allows accurate calculations of a broad range of atomic and molecular systems of different electronic characteristics.
View Article and Find Full Text PDFAccurate ab initio calculations are of fundamental importance in physics, chemistry, biology, and materials science, which have witnessed rapid development in the last couple of years with the help of machine learning computational techniques such as neural networks. Most of the recent efforts applying neural networks to ab initio calculation have been focusing on the energy of the system. In this study, we take a step forward and look at the interatomic force obtained with neural network wavefunction methods by implementing and testing several commonly used force estimators in variational quantum Monte Carlo (VMC).
View Article and Find Full Text PDF