Publications by authors named "Weilong Yin"

Monolayer MXenes are a novel class of two-dimensional transition metal carbides/nitrides with fascinating physicochemical properties. Despite recent advances in the study of MXenes' mechanical properties, a comprehensive understanding of the fundamental physical mechanisms that affect fracture due to surface terminations and vacancy defects in MXenes under nanoindentation remains largely unexplored. Here, we address this gap using molecular dynamics simulations and nanoindentation theory to investigate the effects of surface terminations and vacancy defects on the fracture behavior of TiCT MXenes.

View Article and Find Full Text PDF

Longitudinal corrugated tubes (LCTs) exhibit stable platform force under axial compression but have low specific energy absorption. Conversely, circumferential corrugated tubes (CCTs) offer higher specific energy absorption but with unstable platform force. To overcome these limitations, this paper introduces a novel bi-directional corrugated tube (BCT) that amalgamates the strengths of both the CCT and LCT while mitigating their weaknesses.

View Article and Find Full Text PDF

To investigate the influence of addition amount and length of steel fibers on the bearing capacity of a concrete beam, this study simulated the crack propagation process of a concrete beam in a four-point bending experiment. The extended finite element method (XFEM) using the ABAQUS software was adopted. Additionally, stress distribution trends for the concrete under loading and load-displacement curves at the stressed points were obtained.

View Article and Find Full Text PDF

Typically, solid materials exhibit transverse contraction in response to stretching in the orthogonal direction and transverse expansion under compression conditions. However, when flexible graphene nanosheets are assembled into a 3D porous architecture, the orientation-arrangement-delivered directional deformation of micro-nanosheets may induce anomalous mechanical properties. In this study, a 3D hierarchical graphene metamaterial (GTM) with twin-structured morphologies is assembled by manipulating the temperature gradient for ice growth during in situ freeze-casting procedures.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC.

View Article and Find Full Text PDF

The inaccuracy of the most widely used potentials in calculating the phonon transport of sp carbon materials hinders the use of molecular dynamics simulations for revealing the underlying mechanism of phonon transport in diamond and related materials. Here, we introduce an optimized Tersoff potential by optimizing the parameters to fit the experimentally determined phonon dispersion in diamond along the high-symmetry directions. Molecular dynamics simulations are performed using this new potential to investigate the phonon thermal transport in flawless and nanotwinned diamond.

View Article and Find Full Text PDF

Assembling TiCT MXene nanosheets into three-dimensional (3D) architecture with controllable alignment is of great importance for electromagnetic wave absorption (EMA) application. However, it is a great challenge to realize it due to the weak van der Waals interconnection between MXene nanosheets. Herein, we propose to introduce gelatin molecules as a "chemical glue" to fabricate the 3D Mxene@gelatin (M@G) nanocomposite aerogel using a unidirectional freeze casting method.

View Article and Find Full Text PDF

Developing microwave absorption materials with broadband and lightweight characters is of great significance. However, it is still a great challenge for carbonized biomass without loading magnetic particles to cover the broad microwave frequency. Herein, it is proposed to carbonize freeze-dried waxberry to make full use of its natural hierarchical gradient structure to target the ultrabroad band microwave absorption.

View Article and Find Full Text PDF

Carbon nanotube yarn actuators are in great demand for flexible devices or intelligent applications. Artificial muscles based on carbon nanotube yarn have achieved great progress over past decades. However, uncontrollable, small deformations and relatively slow deformation recovery are still great challenges for carbon nanotube yarn artificial muscles.

View Article and Find Full Text PDF

The dynamic mechanical behavior of thermoplastic composites over a wide range of strain rates has become an important research topic for extreme environmental survivability in the fields of military protection, aircraft safety, and aerospace engineering. However, the dynamic compression response in the out-of-plane direction, which is one of the most important loading conditions resulting in the damage of composite materials, has not been investigated thoroughly when compared to in-plane compression and tensile behavior under high strain rates. Thus, we used split Hopkinson pressure bar (SHPB) tests to conduct the out-of-plane compression test of cross-ply carbon fiber-reinforced polyetheretherketone (AS4/PEEK) composite laminates.

View Article and Find Full Text PDF

Lightweight, high-performance, thermally insulating, and antifrosting porous materials are in increasing demand to improve energy efficiency in many fields, such as aerospace and wearable devices. However, traditional thermally insulating materials (porous ceramics, polymer-based sponges) could not simultaneously meet these demands. Here, we propose a hierarchical assembly strategy for producing nanocomposite foams with lightweight, mechanically flexible, superinsulating, and antifrosting properties.

View Article and Find Full Text PDF

Electromagnetic interference (EMI) shielding materials for electronic devices in aviation and aerospace not only need lightweight and high shielding effectiveness, but also should withstand harsh environments. Traditional EMI shielding materials often show heavy weight, poor thermal stability, short lifetime, poor tolerance to chemicals, and are hard-to-manufacture. Searching for high-efficiency EMI shielding materials overcoming the above weaknesses is still a great challenge.

View Article and Find Full Text PDF

A roller electrospinning technique is combined with sol-gel chemistry to fabricate silica and polymeric materials on conductive and nonconductive substrates to verify its ability for controlling the long-range periodic structure of the final product. According to the experimental results, formation of the one-dimensional periodic silica structure was dependent on the electrical conductivity of the collector substrate. The periodic density seems to be related to the width of silica product.

View Article and Find Full Text PDF