Lung cancer is one of the most common malignancies with low prevention efficiency and high mortality, so prevention and early detection are very important. In this work, we propose a magnetic metal-organic skeleton nanomaterial bound to biological nucleic acid chains in a spatially confined magnetic single-drop microextraction (SDME) system to enhance the aggregation-induced emission (AIE) effect for fluorescence detection of miRNA-21 associated with lung cancer. DNA/MOF network structure was formed, and loaded with an AIE material, 4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl) tetrakis-([1,1-biphenyl]-3-carboxylic acid) (HETTC), by DNA amplification reaction.
View Article and Find Full Text PDFSmart drug platforms based on spatiotemporally controlled release and integration of tumor imaging are expected to overcome the inefficiency and uncertainty of traditional theranostic modes. In this study, a composite consisting of a thermosensitive hydrogel (polyvinyl alcohol-carboxylic acid hydrogel (PCF)) and a multifunctional nanoparticle (FeO@Au/Mn(Zn)-4-carboxyphenyl porphyrin/polydopamine (FAMP)) is developed to combine tumor immunogenic cell death (ICD)/immune checkpoint blockade (ICB) therapy under the guidance of magnetic resonance imaging (MRI) and fluorescence imaging (FI). It can not only further recognize the target cells through the folate receptor of tumor cells, but also produce thermal dissolution after exposure to near-infrared light to slowly release FAMP in situ, thereby prolonging the treatment time and avoiding tumor recurrence.
View Article and Find Full Text PDFThe detection of multiple single nucleotide polymorphisms (SNPs) of circulating tumor DNA (ctDNA) is still a great challenge. In this study, we designed enzyme-assisted nucleic acid strand displacement amplification combined with high-performance liquid chromatography (HPLC) for the simultaneous detection of three ctDNA SNPs. First, the trace ctDNA could be hybridized to the specially designed template strand, which initiated the strand displacement nucleic acid amplification process under the synergistic action of DNA polymerase and restriction endonuclease.
View Article and Find Full Text PDFEasy diffusion and low reusability limit the practicality of photocatalysts. In this study, a hollow sphere (HS) heterojunction was synthesized based on oxygen-doped carbon nitride (OCN) and layered double hydroxides (LDHs). A thermosensitive HS hydrogel (HS Gel) was prepared by mixing HS with N-isopropylacrylamide.
View Article and Find Full Text PDFPrecise and early screening of colorectal cancer (CRC) is one crucial yet challenging task for its treatment, and the analysis of multi-targets of CRC in a single assay with high accuracy is essential for pathological research and clinical diagnosis. Here, a CRC-related biomarker pair, microRNA-211 (miRNA-211) and HS, was detected by constructing a three-dimensional (3D) ordered DNA network. First, trace amount of miRNA-211 could initiate a hybridization chain reaction-based amplification process.
View Article and Find Full Text PDFIn Brief: Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) have shown promise as off-the-shelf therapeutics; however, producing them in sufficient quantities can be challenging. In this study, MSCs were isolated from preimplantation equine embryos and used to produce EVs in two commercially available bioreactor designs.
Abstract: Mesenchymal stromal cells (MSC) have recently been explored for their potential use as therapeutics in human and veterinary medicine applications, such as the treatment of endometrial inflammation and infertility.
We proposed a simple and sensitive strategy for the detection of microRNAs (miRNAs) by converting homogeneous assay into surface-tethered electrochemical analysis. Specifically, the biotinylated detection probes (biotin-DNA-biotin) can trigger the in-situ assembly of tetrameric streptavidin (SA) proteins on an electrode surface via the SA-biotin interactions. The (SA-biotin-DNA-biotin) assemblies electrically insulated the electrode interface, thereby blocking the electron transfer of [Fe(CN)].
View Article and Find Full Text PDFSensitive and accurate quantification of wild-type p53 protein is of great importance for biological research and clinical diagnosis. Herein, a modification-free amperometric biosensor was proposed for sensitive detection of wild-type p53 protein by the signal amplification of silver nanoparticles (AgNPs) networks formed in situ on electrode surface. Double-stranded DNA (dsDNA) probe containing two consensus sites was immobilized on gold electrode surface to capture wild-type p53 protein.
View Article and Find Full Text PDFParticle image velocimetry (PIV) is a well-established tool to collect high-resolution velocity and turbulence data in the laboratory, in both air and water. Laboratory experiments are often performed under conditions of constant temperature or salinity or in flows with only small gradients of these properties. At larger temperature or salinity variations, the changes in the index of refraction of water or air due to turbulent microstructure can lead to so-called optical turbulence.
View Article and Find Full Text PDFJ Quant Spectrosc Radiat Transf
November 2018
Lasers with orbital angular momentum (OAM) have potential applications in communication technology, manipulation of particles, and remote sensing. Because of its unusual light-scattering properties, the OAM laser's interaction with a molecular atmosphere must be studied to ensure that it is not lossy for communication or remote-sensing applications that involve its transmission through an atmospheric environment. In this study, the finite-difference time-domain (FDTD) method [21] is applied to calculate the light scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with OAM by very small dielectric particles.
View Article and Find Full Text PDFIn this article, we introduce an innovative and practically promising fiber-optic sensing platform (FOSP) that we proposed and demonstrated recently. This FOSP relies on a silicon Fabry-Perot interferometer (FPI) attached to the fiber end, referred to as Si-FOSP in this work. The Si-FOSP generates an interferogram determined by the optical path length (OPL) of the silicon cavity.
View Article and Find Full Text PDFThe propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5 m×0.5 m×0.
View Article and Find Full Text PDFSmall-scale spatial variation in temperature can lead to localized changes in the index of refraction and can distort electro-optical (EO) signal transmission in ocean and atmosphere. This phenomenon is well-studied in the atmosphere, where it is generally called "optical turbulence". Less is known about how turbulent fluctuations in the ocean distort EO signal transmissions, an effect that can impact various underwater applications, from diver visibility to active and passive remote sensing.
View Article and Find Full Text PDFWe report a fiber-optic micro-heater based on a miniature crystalline silicon Fabry-Perot interferometer (FPI) fusion spliced to the endface of a single-mode fiber. The silicon FPI, having a diameter of 100 μm and a length of 10 or 200 μm, is heated by a 980 nm laser diode guided through the lead-in fiber, leading to a localized hot spot with a temperature that can be conveniently tuned from the ambient temperature to >1000°C in air. In the meantime, using a white light system operating in the 1550 nm wavelength window where the silicon is transparent, the silicon FPI itself also serves as a thermometer with high resolution and high speed for convenient monitoring and precise control of the heater temperature.
View Article and Find Full Text PDFWe report a miniature fiber-optic water vector flow sensor based on an array of silicon Fabry-Perot interferometers (FPIs). The flow sensor is composed of four silicon FPIs, one in the center with the other three equally distributed around it. The center FPI is heated by a cw laser at 980 nm, which is guided through the lead-in single mode fiber.
View Article and Find Full Text PDFObjectives: The aim of this pilot study was to determine the serum concentration of heparan sulfate, hyaluronan, chondroitin sulfate and syndecan-1 and if these serum concentrations can be used to identify women at 20 weeks' gestation who later develop gestational diabetes mellitus (GDM).
Design: Nested case-control study from Auckland, New Zealand participants in the prospective cohort Screening for Pregnancy Endpoints study.
Setting: Auckland, New Zealand.
In practical applications of fiber optic sensors based on Fabry-Perot interferometers (FPIs), the lead-in optical fiber often experiences dynamic or static bending due to environmental perturbations or limited installation space. Bending introduces wavelength-dependent losses to the sensors, which can cause erroneous readings for sensors based on wavelength demodulation interrogation. Here, we investigate the bending-induced wavelength shift (BIWS) to sensors based on FPIs.
View Article and Find Full Text PDFThe influence of optically active turbulence on the propagation of laser beams is investigated in clear ocean water over a path length of 8.75 m. The measurement apparatus is described and the effects of optical turbulence on the laser beam are presented.
View Article and Find Full Text PDFTurbulence poses challenges in many atmospheric and underwater surveillance applications. The compressive line sensing (CLS) active imaging scheme has been demonstrated in simulations and test tank experiments to be effective in scattering media such as turbid coastal water, fog, and mist. The CLS sensing model adopts the distributed compressive sensing theoretical framework that exploits both intrasignal sparsity and the highly correlated nature of adjacent areas in a natural scene.
View Article and Find Full Text PDFThe paradox between a large dynamic range and a high resolution commonly exists in nearly all kinds of sensors. Here, we propose a fiber-optic thermometer based on dual Fabry-Perot interferometers (FPIs) made from the same material (silicon), but with different cavity lengths, which enables unambiguous recognition of the dense fringes associated with the thick FPI over the free-spectral range determined by the thin FPI. Therefore, the sensor combines the large dynamic range of the thin FPI and the high resolution of the thick FPI.
View Article and Find Full Text PDFWe report a novel fiber-optic anemometer with self-temperature compensation capability based on a Fabry-Pérot interferometer (FPI) formed by a thin silicon film attached to the end face of a single-mode fiber. Guided in the fiber are a visible laser beam from a 635 nm diode laser used to heat the FPI and a white-light in the infrared wavelength range as the signal light to interrogate the optical length of the FPI. Cooling effects on the heated sensor head by wind is converted to a wavelength blueshift of the reflection spectral fringes of the FPI.
View Article and Find Full Text PDFWe report a fiber-optic sensor based on a silicon Fabry-Pérot cavity, fabricated by attaching a silicon pillar on the tip of a single-mode fiber, for high-resolution and high-speed temperature measurement. The large thermo-optic coefficient and thermal expansion coefficient of the silicon material give rise to an experimental sensitivity of 84.6 pm/°C.
View Article and Find Full Text PDFBackground: Total knee arthroplasty (TKA) is associated with significant perioperative blood loss and need for transfusion. This study aimed to evaluate the effectiveness and safety of tranexamic acid (TXA) to reduce perioperative blood loss in patients receiving TKA.
Material And Methods: A total of 92 patients who accepted unilateral TKA from May 2012 to May 2013 randomly received either 15 mg/kg TXA in 100 mL normal saline solution (TXA group, n=46) or the same amount of normal saline solution (placebo group, n=46) at 15 min before the tourniquet was loosened.
The cross-flow orientation of an optically active turbulent field was determined by Fourier transforming the wander of a laser beam propagating in the ocean. A simple physical model for the measured effect is offered, and numerical simulations are performed. The simulations are in good agreement with measurements, validating the assumptions made in the model.
View Article and Find Full Text PDF