Adv Sci (Weinh)
October 2024
Graphene field-effect transistors (GFETs) are widely used in biosensing due to their excellent properties in biomolecular signal amplification, exhibiting great potential for high-sensitivity and point-of-care testing in clinical diagnosis. However, difficulties in complicated fabrication steps are the main limitations for the further studies and applications of GFETs. In this study, a modular fabrication technique is introduced to construct microfluidic GFET biosensors within 3 independent steps.
View Article and Find Full Text PDFMicromachines (Basel)
December 2023
Optofluidic dye lasers integrated into microfluidic chips are promising miniature coherent light sources for biosensing. However, achieving the accurate and efficient tuning of lasers remains challenging. This study introduces a novel pneumatically tunable optofluidic distributed feedback (DFB) dye laser in a multilayer microfluidic chip.
View Article and Find Full Text PDFMicroRNAs (miRNAs) have attracted extensive interest as promising biomarkers for the profiling of diseases. However, quantitative measurement of miRNAs presents a significant challenge in biochemical studies. In this work, we developed an innovative optofluidic platform to perform a rapid, simple, quantitative and high-specificity miRNA assay using the Förster resonance energy transfer (FRET) principle.
View Article and Find Full Text PDFIn this paper, we present a novel method to improve the efficiency of single-cell transcriptome sequencing for analyzing valuable cell samples. The microfluidic device we designed integrates multiple single-cell isolation chambers with hydrodynamic traps and achieves a nearly 100% single-cell capture rate and minimal cell loss, making it particularly suitable for samples with limited numbers of cells. Single cells were encapsulated using a novel phase-switch method into picoliter-sized hydrogel droplets and easily recovered for subsequent reactions.
View Article and Find Full Text PDFMicromachines (Basel)
December 2017
We demonstrate a two-directional tuning method of distributed feedback (DFB) film dye laser devices to achieve high quality lasing and a large tuning range. In this work, we proposed a simple method to fabricate a continuous tunable solid-state dye laser on a flexible Polydimethylsiloxane (PDMS) film. In order to obtain stable and tunable output lasing, the stretching property of the gelatine host was improved by mixing with a certain ratio of glycerol to prevent DFB cavity destruction.
View Article and Find Full Text PDFRecently there has been a more focus on the development of an efficient technique for detection of circulating tumor cells (CTCs), due to their significance in prognosis and therapy of metastatic cancer. However, it remains a challenge because of the low count of CTCs in the blood. Herein, a rapid and high-sensitivity approach for CTCs detection using an integrated microfluidic system, consisting of a deterministic lateral displacement (DLD) isolating structure, an automatic purifying device with CD45-labeled immunomagnetic beads and a capturing platform coated with rat-tail collagen was reported.
View Article and Find Full Text PDFWe present a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation. A liquid-core/PDMS-cladding waveguide with a power splitter design was integrated with a neural cell culture chamber to provide a simple way of precise localized optical stimulation. The parallel on-chip excitation of individual neural cells using a single optical fiber input is demonstrated for optogenetic neural cell studies, and the excitation of each individual waveguide can be independently controlled by pneumatic valves.
View Article and Find Full Text PDFThis work reports a microfluidic device with deterministic lateral displacement (DLD) arrays allowing rapid and label-free cancer cell separation and enrichment from diluted peripheral whole blood, by exploiting the size-dependent hydrodynamic forces. Experiment data and theoretical simulation are presented to evaluate the isolation efficiency of various types of cancer cells in the microfluidic DLD structure. We also demonstrated the use of both circular and triangular post arrays for cancer cell separation in cell solution and blood samples.
View Article and Find Full Text PDFBiosens Bioelectron
September 2013
In this work, we introduced an integrated microfluidic system for fast and efficient circulating tumor cell (CTC) isolation and capture. In this microfluidic platform, a combination of microfluidic deterministic lateral displacement array and affinity-based cell capture architecture, allows for the high efficiency cancer cell enrichment and continuous high throughput and purity cancer cell capture. Using this device to isolate breast cancer cells from spiked blood samples, we achieved an enrichment factor of 1500×, and a high processing throughput of 9.
View Article and Find Full Text PDFSingle-cell transcriptome contains reliable gene regulatory relationships because gene-gene interactions only happen within a mammalian cell. While the study of gene-gene interactions enables us to understand the molecular mechanism of cellular events and evaluate molecular characteristics of a mammalian cell population, its complexity requires an analysis of a large number of single-cells at various stages. However, many existing microfluidic platforms cannot process single-cells effectively for routine molecular analysis.
View Article and Find Full Text PDFHydrophobic polyhydroxyalkanoate (PHA) scaffolds made of a copolyester of 3-hydroxybutyrate-co-hydroxyhexanoate (PHBHHx) were coated with a fusion protein PHA granule binding protein PhaP fused with RGD peptide (PhaP-RGD). Human bone marrow mesenchymal stem cells (hBMSCs) were inoculated on/in the scaffolds for formation of articular cartilages derived from chondrogenic differentiation of hBMSCs for cartilage tissue engineering. PhaP-RGD coating led to more homogeneous spread of cells, better cell adhesion, proliferation and chondrogenic differentiation in the scaffolds compared with those of PhaP coated or uncoated scaffolds immerging in serum minus chondrogenic induction medium.
View Article and Find Full Text PDF