As global plastic consumption and littering escalate, innovative approaches to sustainable waste management are crucial. Enzymatic depolymerization has emerged as a promising recycling method for polyesters via monomer recovery under mild conditions. However, current research mainly focuses on using a single plastic feedstock, which can only be derived from complex and costly plastic waste sorting.
View Article and Find Full Text PDFSolving the plastic crisis requires high recycling quotas and technologies that allow open loop recycling. Here a biological plastic valorization approach consisting of tandem enzymatic hydrolysis and monomer conversion of post-consumer polyethylene terephthalate into value-added products is presented. Hydrolysates obtained from enzymatic degradation of pre-treated post-consumer polyethylene terephthalate bottles in a stirred-tank reactor served as the carbon source for a batch fermentation with an engineered Pseudomonas putida strain to produce 90mg/L of the biopolymer cyanophycin.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Electrospun nanofibers, renowned for their high specific surface area, robust mechanical properties, and versatile chemical functionalities, offer a promising platform for enzyme immobilization. Over the past decade, significant strides have been made in developing enzyme-induced electrospun nanofibers (EIEN). This review systematically summarizes the advanced applications of EIEN which are fabricated using both non-specific immobilization methods including interfacial adsorption (direct adsorption, cross-linking, and covalent binding) and encapsulation, and specific immobilization techniques (coordination and affinity immobilization).
View Article and Find Full Text PDFWith the increasing focus on environmental friendliness and sustainable development, extensive research has been conducted on the biodegradation of plastics. The non-hydrolyzable, highly hydrophobic, and high-molecular-weight properties of polyethylene (PE) pose challenges for cell interaction and biodegradation of PE substrates. To overcome these obstacles, PE films were treated with low-temperature plasma before biodegradation.
View Article and Find Full Text PDFBioresour Technol
November 2024
Microbial biofilms have gained significant traction in commercial wastewater treatment due to their inherent resilience, well-organized structure, and potential for collaborative metabolic processes. As our understanding of their physiology deepens, these living catalysts are finding exciting applications beyond wastewater treatment, including the production of bulk and fine chemicals, bioelectricity generation, and enzyme immobilization. While the biological applications of biofilms in different biocatalytic systems have been extensively summarized, the applications of artificially engineered biofilms were rarely discussed.
View Article and Find Full Text PDFPolyethylene terephthalate (PET) is a widely used material in our daily life, particularly in areas such as packaging, fibers, and engineering plastics. However, PET waste can accumulate in the environment and pose a great threat to our ecosystem. Recently enzymatic conversion has emerged as an efficient and green strategy to address the PET crisis.
View Article and Find Full Text PDFExcessive production of waste polyethylene terephthalate (PET) poses an ecological challenge, which necessitates developing technologies to extract the values from end-of-life PET. Upcycling has proven effective in addressing the low profitability of current recycling strategies, yet existing upcycling technologies operate under energy-intensive conditions. Here we report a cascade strategy to steer the transformation of PET waste into glycolate in an overall yield of 92.
View Article and Find Full Text PDFRaising the charging voltage and employing high-capacity cathodes like lithium cobalt oxide (LCO) are efficient strategies to expand battery capacity. High voltage, however, will reveal major issues such as the electrolyte's low interface stability and weak electrochemical stability. Designing high-performance solid electrolytes from the standpoint of substance genetic engineering design is consequently vital.
View Article and Find Full Text PDFPoly(butylene adipate-co-terephthalate) (PBAT) is widely utilized in the production of food packaging and mulch films. Its extensive application has contributed significantly to global solid waste, posing numerous environmental challenges. Recently, enzymatic recycling has emerged as a promising eco-friendly solution for the management of plastic waste.
View Article and Find Full Text PDFEnvironmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp.
View Article and Find Full Text PDFThe escalating crisis of polyethylene terephthalate (PET) microplastic contamination in biological wastewater treatment systems is a pressing environmental concern. These microplastics inevitably accumulate in sewage sludge due to the absence of effective removal technologies. Addressing this urgent issue, this study introduces a novel approach using DuraPETase, a potent enzyme with enhanced PET hydrolytic activity at ambient temperatures.
View Article and Find Full Text PDFPolyurethane (PU) is a complex polymer synthesized from polyols and isocyanates. It contains urethane bonds that resist hydrolysis, which decreases the efficiency of biodegradation. In this study, we first expressed the amidase GatA250, and then, assessed the enzymatic characterization of GatA250 and its efficiency in degrading the polyester-PU.
View Article and Find Full Text PDFPlastic degradation by biological systems emerges as a prospective avenue for addressing the pressing global concern of plastic waste accumulation. The intricate chemical compositions and diverse structural facets inherent to polyurethanes (PU) substantially increase the complexity associated with PU waste management. Despite the extensive research endeavors spanning over decades, most known enzymes exhibit a propensity for hydrolyzing waterborne PU dispersion (i.
View Article and Find Full Text PDFMicroorganisms have the potential to be applied for the degradation or depolymerization of polyurethane (PU) and other plastic waste, which have attracted global attention. The appropriate strain or enzyme that can effectively degrade PU is the key to treat PU plastic wastes by biological methods. Here, a polyester PU-degrading bacterium Bacillus sp.
View Article and Find Full Text PDFBiodegradable plastics, were considered environmentally friendly, may produce more microplastic particles (MPs) within the same period and exert more pronounced adverse effects on human health than traditional non-biodegradable plastics. Thus, this study investigated the changes of two kinds of biodegradable MPs from different sources in the digestive tract by using simulated digestion and fermentation models in vitro, with particle size, scanning electron microscopy (SEM) and gel permeation chromatography (GPC) analysis, and their implications on the gut microbiota were detected by full-length bacterial 16S rRNA gene amplicon sequencing. Poly(ε-caprolactone) (PCL) MPs exhibited stability in the upper gastrointestinal tract, while poly(lactic acid) (PLA) MPs were degraded beginning in the small intestine digestion phase.
View Article and Find Full Text PDFMonitoring intracellular pyruvate is useful for the exploration of fundamental metabolism and for guiding the construction of yeast cell factories for chemical production. Here, we employed a genetically encoded fluorescent Pyronic biosensor to light up the pyruvate metabolic state in the cytoplasm, nucleus, and mitochondria of BY4741. A strong correlation was observed between the pyruvate fluctuation in mitochondria and cytoplasm when exposed to different metabolites.
View Article and Find Full Text PDFBiofilm-based fermentation has great potential, as it possesses inherent characteristics such as self-immobilization, high resistance to reactants, and long-term activity. This forum focuses on research targets for promoting biofilm engineering to maximize the beneficial features of biofilms and to effectively utilize them in biofilm-mediated fermentation.
View Article and Find Full Text PDFDue to the extensive utilization of poly (ethylene terephthalate) (PET), a significant amount of PET waste has been discharged into the environment, endangering both human health and the ecology. As an eco-friendly approach to PET waste treatment, biodegradation is dependent on efficient strains and enzymes. In this study, a screening method was first established using polycaprolactone (PCL) and PET nanoparticles as substrates.
View Article and Find Full Text PDFBackground: Yeast biomass, encompassing fatty acids, terpenoids, vitamins, antioxidants, enzymes, and other bioactive compounds have been extensively utilized in food-related fields. The safety and potential bioactivities of Scheffersomyces segobiensis DSM 27193, an oleaginous yeast strain, are unclear.
Results: Scheffersomyces segobiensis DSM 27193 accumulated large palmitoleic acid (POA) levels (43.
Dextran, a variant of α-glucan with a significant proportion of α-(1,6) bonds, exhibits remarkable solubility in water. Nonetheless, the precipitation of dextran has been observed in injection vials during storage. The present study aimed to establish a technique for generating insoluble dextran and analyze its structural properties.
View Article and Find Full Text PDFConversion of plastic waste into porous carbon for CO capture is an attractive approach to solve the carbon emission and plastic pollution problems, simultaneously. However, the previous studies are limited to the utilization of single PET plastic. The conversion of mixed plastic waste (MPW), which is of more practical significance, is seldom reported.
View Article and Find Full Text PDF