3D Print Addit Manuf
February 2024
In this work, open or closed air cavity (air bubble) inclusion structures are 3D printed via direct ink writing and fused deposition modeling methods utilizing materials of polydimethylsiloxane silicone or thermoplastic polyurethane, respectively, and these structures are examined for their attenuation capacity concerning ultrasonic waves in underwater environment. It is found that several factors, such as interstitial fencing layer, air cavity fraction, material interface interaction, and material property, are fundamental elements governing the overall attenuation performance. Hence, via 3D printing technique, which could conveniently manipulate structure's cavity volume fraction, such as via filament size and filament density on surface, structures with tunable attenuation could be designed.
View Article and Find Full Text PDFSolution-processed zinc oxide (ZnO) is one of the widely used electron transporting layers (ETLs) for organic solar cells (OSCs). However, low optical transparency along with thickness-sensitivity of ZnO ETL constrains the improvement of photovoltaic performance and large-scale fabrication compatibility. To resolve these issues, zirconium (Zr) doping is applied to tailor the optoelectronic and morphological properties of ZnO layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Materials possessing exceptional temperature sensitivity and high stretchability are of importance for real-time temperature monitoring on three-dimensional components with complex geometries, when operating under various external deformation modes. Herein, we develop a stretchable temperature sensor consisting of cellular graphene/polydimethylsiloxane composite. The first of its kind, graphene-based polymer composites with desired microstructures are produced through a direct 3D ink-writing technique.
View Article and Find Full Text PDF