Biointerfacing nanomaterials with cell membranes has been successful in the functionalization of nanoparticles or nanovesicles, but microbubble functionalization remains challenging due to the unique conformation of the lipid monolayer structure at the gas-liquid interface that provides insufficient surfactant activity. Here, we describe a strategy to rationally regulate the surfactant activity of platelet membrane vesicles by adjusting the ratio of proteins to lipids through fusion with synthetic phospholipids (i.e.
View Article and Find Full Text PDFRecently, immune checkpoint blockade (ICB) therapy has achieved great success in inhibition of the recurrence and metastasis of tumor. However, this therapy is challenged by the poor delivery efficiency of ICB agents and the insufficient activation of antitumor immunity by ICB only. Here, we describe a strategy using platelets as carriers for co-delivery of ICB agents (anti-PDL1 antibodies, aPDL1) and photothermal agents (iron oxide nanoparticles, IONPs) to the postsurgical tumor site, which simultaneously provides photothermal therapy for ablation of residual tumor cells and ICB therapy for blocking the immunoinhibitory signals in the tumor microenvironment.
View Article and Find Full Text PDFThe recurrence and metastasis of tumor after surgery is the main cause of death for patients with breast cancer. Systemic chemotherapy suffered from low delivery efficiency to tumors and the side effects of chemo drugs. Localized chemotherapy using drug-containing implants is an alternative, while the reconstruction of breast tissue is generally considered after chemotherapy, resulting in a second surgery for patients.
View Article and Find Full Text PDFBackground: Transjugular intrahepatic portosystemic shunt (TIPS) dysfunction can cause recurrent portal hypertension (PH)-related complications such as ascites and gastroesophageal variceal bleeding. Portography is invasive and costly limits its use as a screening modality.
Purpose: To assess the clinical value of conventional ultrasound in combination with point shear wave elastography (pSWE) to predict TIPS dysfunction.