More recently, smart agriculture has received widespread attention, which is a deep combination of modern agriculture and the Internet of Things (IoT) technology. To achieve the aim of scientific cultivation and precise control, the agricultural environments are monitored in real time by using various types of sensors. As a result, smart agricultural IoT generated a large amount of multidimensional time series data.
View Article and Find Full Text PDFIn some emerging wireless applications, such as wearable communication and low-power sensor network applications, wireless devices or nodes not only require simple physical implementation approaches but also require certain reliable receiver techniques to overcome the effects of multipath or shadowed fading. Switched diversity combining (SDC) systems could be a simple and promising solution to the above requirements. Recently, a Fisher-Snedecor ℱ composited fading model has gained much interest because of its modeling accuracy and calculation tractability.
View Article and Find Full Text PDFPower dissipation is a fundamental issue for future chip-based electronics. As promising channel materials, two-dimensional semiconductors show excellent capabilities of scaling dimensions and reducing off-state currents. However, field-effect transistors based on two-dimensional materials are still confronted with the fundamental thermionic limitation of the subthreshold swing of 60 mV decade at room temperature.
View Article and Find Full Text PDFSensors (Basel)
December 2019
Correlation electromagnetic analysis (CEMA) is a method prevalent in side-channel analysis of cryptographic devices. Its success mostly depends on the quality of electromagnetic signals acquired from the devices. In the past, only one byte of the key was analyzed and other bytes were regarded as noise.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) are promising candidates for smart electronic devices. However, it is challenging to mediate their bandgap or chirality from a vapor-liquid-solid growth process. Here, we demonstrate rate-selected semiconducting CNT arrays based on interlocking between the atomic assembly rate and bandgap of CNTs.
View Article and Find Full Text PDFTargeted therapy against VEGF and mTOR pathways has been established as the standard-of-care for metastatic clear cell renal cell carcinoma (ccRCC); however, these treatments frequently fail and most patients become refractory requiring subsequent alternative therapeutic options. Therefore, development of innovative and effective treatments is imperative. About 80%-90% of ccRCC tumors express an inactive mutant form of the von Hippel-Lindau protein (pVHL), an E3 ubiquitin ligase that promotes target protein degradation.
View Article and Find Full Text PDFPrevious studies have shown that the skeletal dihydropyridine receptor (DHPR) pore subunit Ca(V)1.1 (alpha1S) physically interacts with ryanodine receptor type 1 (RyR1), and a molecular signal is transmitted from alpha1S to RyR1 to trigger excitation-contraction (EC) coupling. We show that the beta-subunit of the skeletal DHPR also binds RyR1 and participates in this signaling process.
View Article and Find Full Text PDFMolecular understanding of the mechanism of excitation-contraction (EC) coupling in skeletal muscle has been made possible by cultured myotube models lacking specific dihydropyridine receptor (DHPR) subunits and ryanodine receptor type 1 (RyR1) isoforms. Transient expression of missing cDNAs in mutant myotubes leads to a rapid recovery, within days, of various Ca2+ current and EC coupling phenotypes. These myotube models have thus permitted structure-function analysis of EC coupling domains present in the DHPR controlling the opening of RyR1.
View Article and Find Full Text PDFMaurocalcine is a scorpion venom toxin of 33 residues that bears a striking resemblance to the domain A of the dihydropyridine voltage-dependent calcium channel type 1.1 (Cav1.1) subunit.
View Article and Find Full Text PDFChimeras consisting of the homologous skeletal dihydropyridine receptor (DHPR) beta1a subunit and the heterologous cardiac/brain beta2a subunit were used to determine which regions of beta1a were responsible for the skeletal-type excitation-contraction (EC) coupling phenotype. Chimeras were transiently transfected in beta1 knockout myotubes and then voltage-clamped with simultaneous measurement of confocal fluo-4 fluorescence. All chimeras expressed a similar density of DHPR charge movements, indicating that the membrane density of DHPR voltage sensors was not a confounding factor in these studies.
View Article and Find Full Text PDFThe beta-subunit of the dihydropyridine receptor (DHPR) enhances the Ca(2+) channel and voltage-sensing functions of the DHPR. In skeletal myotubes, there is additional modulation of DHPR functions imposed by the presence of ryanodine receptor type-1 (RyR1). Here, we examined the participation of the beta-subunit in the expression of L-type Ca(2+) current and charge movements in RyR1 knock-out (KO), beta1 KO, and double beta1/RyR1 KO myotubes generated by mating heterozygous beta1 KO and RyR1 KO mice.
View Article and Find Full Text PDFWe investigated the contribution of the carboxyl terminus region of the beta1a subunit of the skeletal dihydropyridine receptor (DHPR) to the mechanism of excitation-contraction (EC) coupling. cDNA-transfected beta1 KO myotubes were voltage clamped, and Ca(2+) transients were analyzed by confocal fluo-4 fluorescence. A chimera with an amino terminus half of beta2a and a carboxyl terminus half of beta1a (beta2a 1-287/beta1a 325-524) recapitulates skeletal-type EC coupling quantitatively and was used to generate truncated variants lacking 7 to 60 residues from the beta1a-specific carboxyl terminus (Delta7, Delta21, Delta29, Delta35, and Delta60).
View Article and Find Full Text PDFA fundamental problem of plant science is to understand the biochemical basis of plant/pathogen interactions. The foliar disease tan spot of wheat (Triticum aestivum), caused by Pyrenophora tritici-repentis, involves Ptr ToxA, a proteinaceous host-selective toxin that causes host cell death. The fungal gene ToxA encodes a 17.
View Article and Find Full Text PDF