Publications by authors named "Weijing Lai"

Fibrosis occurs in many organs, and its sustained progress can lead to organ destruction and malfunction. Although numerous studies on organ fibrosis have been carried out, its underlying mechanism is largely unknown, and no ideal treatment is currently available. Ferroptosis is an iron-dependent process of programmed cell death that is characterized by lipid peroxidation.

View Article and Find Full Text PDF

Although inhibition of neprilysin (NEP) might be a therapeutic strategy with the potential to improve the outcome of chronic kidney disease (CKD), the versatile function of NEP with its mechanism remains obscure in kidney fibrosis. In the study, we found that NEP was abnormally increased in tubular epithelial cells of CKD patients, as well as unilateral ureteral obstruction and adenine diet-induced mice. Treatment with a United States Food and Drug Administration-approved NEP inhibitor Sacubitrilat (LBQ657) could alleviate ferroptosis, tubular injury, and delay the progression of kidney fibrosis in experimental mice.

View Article and Find Full Text PDF

Background: Refractory peritonitis is one of the leading causes of catheter failure in peritoneal dialysis (PD) patients. However, there are no established curative therapies available, and only catheter removal should be performed. Here we present a case series study to illustrate the efficacy of antibiotic lock for PD-associated refractory peritonitis.

View Article and Find Full Text PDF

Considerable evidence indicated the relationship between fatty acid-binding protein 4 (FABP4) and kidney diseases. FABP4, a small molecular lipid chaperone, is identified to regulate fatty acid oxidation, inflammation, apoptosis, endoplasmic reticulum stress and macrophage-to-myofibroblast transition in kidney diseases. Many studies have shown that circulating FABP4 level is related to proteinuria, renal function decline, cardiovascular complications of end-stage renal disease and even the prognosis of kidney transplanted patients.

View Article and Find Full Text PDF

Background:: Cyclosporine A (CsA) is a commonly used clinical immunosuppressant. However, CsA exposure in rabbits during the gestation period was shown to cause a postnatal decrease in the number of nephrons, with the effects remaining unknown. In this study, we aimed to explore the effects of CsA on metanephros development in the pregnant BALB/c mice.

View Article and Find Full Text PDF