Superionic conductor-based solid-state electrolytes with preferred crystal structures hold great promise for realizing ultrafast lithium-ion (Li) transfer, which is urgently desired for all-solid-state lithium batteries. However, the precise control of crystal growth of superionic conductors is still challenging since the crystals always spontaneously grow to disordered structures with the lowest internal energy to ensure thermodynamic stability. Herein, a coaxial nanowire with a polyvinylpyrrolidone (PVP) sheath and a LiLaTiO (LLTO) precursor core (PVP/LLTO-caNW) is prepared through coaxial electrospinning, followed by sintering into LLTO nanowire with an oriented crystal structure (LLTO-caNW).
View Article and Find Full Text PDFMulti-project parallelism is an important feature of open source communities (OSCs), and multi-project collaboration among users is a favorable condition for an OSC's development. This paper studies the robustness of this type of community. Based on the characteristics of knowledge collaboration behavior and the large amount of semantic content generated from user collaboration in open source projects, we construct a directed, weighted, semantic-based multi-project knowledge collaboration network.
View Article and Find Full Text PDFInorganic superionic conductor holds great promise for high-performance all-solid-state lithium batteries. However, the ionic conductivity of traditional inorganic solid electrolytes (ISEs) is always unsatisfactory owing to the grain boundary resistance and large thickness. Here, a 13 μm-thick laminar framework with ≈1.
View Article and Find Full Text PDF