Publications by authors named "Weijie Fei"

Brain-computer interface (BCI) offers a novel means of communication and control for individuals with disabilities and can also enhance the interactions between humans and machines for the broader population. This paper explores the brain neural signatures of unmanned aerial vehicle (UAV) operators in emergencies and develops an operator's electroencephalography (EEG) signals-based detection method for UAV emergencies. We found regularity characteristics similar to classic event-related potential (ERP) components like visual mismatch negativity (vMMN) and contingent negative variation (CNV).

View Article and Find Full Text PDF

The target detection based on electroencephalogram (EEG) signals is a new target detection method. This method recognizes the target by decoding the specific neural response when an operator observes the target, which has important theoretical and application values. This paper focuses on the EEG detection of low-quality video targets, which breaks through the limitation of previous target detection based on EEG signals only for high-quality video targets.

View Article and Find Full Text PDF

Bimanual coordination is important for developing a natural motor brain-computer interface (BCI) from electroencephalogram (EEG) signals, covering the aspects of bilateral arm training for rehabilitation, bimanual coordination for daily-life assistance, and also improving the multidimensional control of BCIs. For the same task targets of both hands, simultaneous and sequential bimanual movements are two different bimanual coordination manners. Planning and performing motor sequences are the fundamental abilities of humans, and it is more natural to execute sequential movements compared to simultaneous movements in many complex tasks.

View Article and Find Full Text PDF

Motor brain-computer interfaces (BCIs) have gained growing research interest in motor rehabilitation, restoration, and prostheses control. Decoding upper-limb movement direction with noninvasive BCIs has been extensively investigated. However, few of them address the intervention of cognitive distraction that impairs decoding performance in practice.

View Article and Find Full Text PDF

Motor brain-computer interface (BCI) refers to the BCI that decodes voluntary motion intentions from brain signals directly and outputs corresponding control commands without activating peripheral nerves and muscles. Motor BCIs can be used for the restoration, compensation, and augmentation of motor function by activating the neuromuscular circuit and facilitating neural plasticity. The essential applications of motor BCIs include neurorehabilitation and daily-life assistance for motor-impaired patients.

View Article and Find Full Text PDF

Motor brain-computer interface (BCI) can intend to restore or compensate for central nervous system functionality. In the motor-BCI, motor execution (ME), which relies on patients' residual or intact movement functions, is a more intuitive and natural paradigm. Based on the ME paradigm, we can decode voluntary hand movement intentions from electroencephalography (EEG) signals.

View Article and Find Full Text PDF

As an important means of environmental reconnaissance and regional security protection, sound target detection (STD) has been widely studied in the field of machine learning for a long time. Considering the shortcomings of the robustness and generalization performance of existing methods based on machine learning, we proposed a target detection method by an auditory brain-computer interface (BCI). We designed the experimental paradigm according to the actual application scenarios of STD, recorded the changes in Electroencephalogram (EEG) signals during the process of detecting target sound, and further extracted the features used to decode EEG signals through the analysis of neural representations, including Event-Related Potential (ERP) and Event-Related Spectral Perturbation (ERSP).

View Article and Find Full Text PDF

The continuous decoding of human movement intention based on electroencephalogram (EEG) signals is valuable for developing a more natural motor augmented or assistive system instead of its discrete classifications. The classic center-out paradigm has been widely used to study discrete and continuous hand movement parameter decoding. However, when applying it in studying continuous movement decoding, the classic paradigm needs to be improved to increase the decoding performance, especially generalization performance.

View Article and Find Full Text PDF

Objective: Hand movement decoding from electroencephalograms (EEG) signals is vital to the rehabilitation and assistance of upper limb-impaired patients. Few existing studies on hand movement decoding from EEG signals consider any distractions. However, in practice, patients can be distracted while using the hand movement decoding systems in real life.

View Article and Find Full Text PDF

Decoding human hand movement from electroencephalograms (EEG) signals is essential for developing an active human augmentation system. Although existing studies have contributed much to decoding single-hand movement direction from EEG signals, decoding primary hand movement direction under the opposite hand movement condition remains open. In this paper, we investigated the neural signatures of the primary hand movement direction from EEG signals under the opposite hand movement and developed a novel decoding method based on non-linear dynamics parameters of movement-related cortical potentials (MRCPs).

View Article and Find Full Text PDF

Decoding the motion intention of the human upper limb from electroencephalography (EEG) signals has important practical values. However, existing decoding models are built under the attended state while subjects perform motion tasks. In practice, people are often distracted by other tasks or environmental factors, which may impair decoding performance.

View Article and Find Full Text PDF

(1) Background: Three-dimensional (3-D) hand position is one of the kinematic parameters that can be inferred from Electromyography (EMG) signals. The inferred parameter is used as a communication channel in human-robot collaboration applications. Although its application from the perspective of rehabilitation and assistive technologies are widely studied, there are few papers on its application involving healthy subjects such as intelligent manufacturing and skill transfer.

View Article and Find Full Text PDF

Decoding human movement parameters from electroencephalograms (EEG) signals is of great value for human-machine collaboration. However, existing studies on hand movement direction decoding concentrate on the decoding of a single-hand movement direction from EEG signals given the opposite hand is maintained still. In practice, the cooperative movement of both hands is common.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfkjpoda9aj4429n6la70laj4ev1v0bpm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once