Fucoxanthin (FN), a carotenoid derived from brown seaweed and algae, offers significant health benefits. However, its unique structure leads to challenges in stability and bioavailability. To overcome these issues, we successfully encapsulated fucoxanthin in solid lipid nanoparticles (SLNs) utilizing health-safe materials, achieving remarkable results.
View Article and Find Full Text PDFIn-vitro blood purification is essential to a wide range of medical treatments, requiring fine-grained analysis and precise separation of blood components. Despite existing methods that can extract specific components from blood by size or by magnetism, there is not yet a general approach to efficiently filter blood components on demand. In this work, we introduce the first programmable non-contact blood purification system for accurate blood component detection and extraction.
View Article and Find Full Text PDFThe clinical benefit of anti-programmed cell death protein 1 (PD-1)-based immunotherapy among patients with microsatellite instable (MSI) endometrial cancer (EC) precedes that of microsatellite stable (MSS) EC, the mechanisms of which have not been fully understood. Circular RNAs (circRNAs) were reported to modulate immune evasion in several types of malignancies, while their roles in the immune regulation in EC remain largely unknown. Here, we conducted circRNA array analysis and mRNA-Sequencing of 10 MSI EC samples and 10 MSS EC samples and identified 1083 differentially expressed circRNAs (DE-circRNAs) and 864 differentially expressed mRNAs, based on which we constructed a circRNA-miRNA-mRNA comprehensive network consisting of 35 DE-circRNAs, 56 predicted miRNAs and 24 differentially expressed mRNAs.
View Article and Find Full Text PDFThis study introduces the synthesis and detailed characterization of a novel thermochromic material capable of reversible alterations in its thermotropic transmittance. Through an emulsion polymerization process, this newly developed material is composed of 75-85% octadecyl acrylate and 0-7% allyl methacrylate, demonstrating a pronounced discoloration effect across a narrow yet critical temperature range of 24.5-39 °C.
View Article and Find Full Text PDFThe combination of multiplex polymerase chain reaction (mPCR) and microfluidic technologies demonstrates great significance in biomedical applications. However, current microfluidics-based molecular diagnostics face challenges in multi-target detection due to their limited fluorescence channels, complicated fabrication process, and high cost. In this research, we proposed a cost-effective sandblasting method for manufacturing silicon microchips and a chip-based microdevice for field mPCR detection.
View Article and Find Full Text PDFWith the increasing global focus on energy efficiency and environmental sustainability, intelligent building materials such as thermochromic glazing have emerged as a hot topic of research. The intent of this paper is to explore the utilization of gel-type thermochromic glazing within the realm of architectural energy conservation calculations. It conducts an exhaustive examination of the material's attributes, its capacity for energy savings, and the obstacles encountered in real-world applications.
View Article and Find Full Text PDFThe lymph node is the most common site of distant metastasis of cervical squamous cell carcinoma (CSCC), which elicits dismal prognosis and limited efficiency for treatment. Elucidation of the mechanisms underlying CSCC lymphatic metastasis would provide potential therapeutic strategies for nodal metastatic of CSCC. Here, based on in vivo lymphatic metastasis screening model, a circular RNA is identified that is termed as lymph node metastasis associated circRNA (LNMAC), is markedly upregulated in lymphatic metastatic CSCC and correlated with lymph node metastasis.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
By incorporating polar fibers into the design of electrorheological (ER) fluids, a 130% performance improvement can be achieved with the addition of only 0.8 vol% of polar long fibers. We quantitatively analyzed the impact of relatively long fibers on improving ER performance by measuring the yield stress, shear stress, and current density after adding fibers.
View Article and Find Full Text PDFThe in-situ high-frequency monitoring of total nitrogen (TN) and total phosphorus (TP) in rivers is a challenge and key to instant water quality judgment and early warning. Based on the physical and chemical association between TN/TP and sensor-measurable predictors, we proposed a novel "indirect" measurement method for TN and TP in rivers. This method combines the timeliness of multi-sensor and the accuracy of intelligent algorithms, utilizing 188,629 data sets from 131 water monitoring stations across China.
View Article and Find Full Text PDFACS Biomater Sci Eng
June 2024
With the utilization of advanced microfluidic techniques, the microfluidic particle counter demonstrates significant potential due to its high efficiency, precise manipulation, and portability. This work focuses on a photodetection counter based on optical absorption. To achieve precise particle detection, a Christmas tree-like structure was implemented to separate a single particle from a cluster, which was then detected in independent multiple parallel channels.
View Article and Find Full Text PDFIn diverse realms of research, such as holographic optical tweezer mechanical measurements, colloidal particle motion state examinations, cell tracking, and drug delivery, the localization and analysis of particle motion command paramount significance. Algorithms ranging from conventional numerical methods to advanced deep-learning networks mark substantial strides in the sphere of particle orientation analysis. However, the need for datasets has hindered the application of deep learning in particle tracking.
View Article and Find Full Text PDFBioengineering (Basel)
April 2024
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2024
Dean flow and Dean instability play an important role in inertial microfluidics, with a wide application in mixing and sorting. However, most studies are limited to Dean flow in the microscale. This work first reports the application of Dean instability on organic nanoparticles synthesis at De up to 198.
View Article and Find Full Text PDFFlexible actuation materials play a crucial role in biomimetic robots. Seeking methods to enhance actuation and functionality is one of the directions in which actuators strive to meet the high-performance and diverse requirements of environmental conditions. Herein, by utilizing the method of adsorbing N-doped carbon dots (NCDs) onto SiO to form clusters of functional particles, a NCDs@SiO/PDMS elastomer was prepared and its combined optical and electrical co-stimulation properties were effectively harnessed to develop a biomimetic crawling robot resembling (firefly).
View Article and Find Full Text PDFAccumulating evidence indicates that metabolic reprogramming of cancer cells supports the energy and metabolic demands during tumor metastasis. However, the metabolic alterations underlying lymph node metastasis (LNM) of cervical cancer (CCa) have not been well recognized. In the present study, it is found that lymphatic metastatic CCa cells have reduced dependency on glucose and glycolysis but increased fatty acid oxidation (FAO).
View Article and Find Full Text PDFBackground: Cervical cancer (CCa) is the fourth most common cancer among females, with high incidence and mortality rates. Circular RNAs (circRNAs) are key regulators of various biological processes in cancer. However, the biological role of circRNAs in cervical cancer (CCa) remains largely unknown.
View Article and Find Full Text PDFLow-temperature co-fired ceramic (LTCC) substrate materials are widely applied in electronic components due to their excellent microwave dielectric properties. However, the absence of LTCC materials with a lower dielectric constant and higher mechanical strength restricts the creation of integrated and minified electronic devices. In this work, sol-gel-derived CaO-BO-SiO (CBS) glass/AlO composites with high flexural strength and low dielectric constant were successfully prepared using the LTCC technique.
View Article and Find Full Text PDFEnergy conservation in buildings is paramount, especially considering that glass accounts for 50% of energy consumption. The solar heat gain coefficient (SHGC) of glass is a critical energy-saving index for transparent structures. However, the fixed SHGC of ordinary glass makes it difficult to provide both summer shading and winter heating.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
May 2024
With the help of neural network-based representation learning, significant progress has been recently made in data-driven online dynamic stability assessment (DSA) of complex electric power systems. However, without sufficient attention to diverse data loss conditions in practice, the existing data-driven DSA solutions' performance could be largely degraded due to practical defective input data. To address this problem, this work develops a robust representation learning approach to enhance DSA performance against multiple input data loss conditions in practice.
View Article and Find Full Text PDFDean's flow and Dean's instability have always been important concepts in the inertial microfluidics. Curved channels are widely used for applications like mixing and sorting but are limited to Dean's flow only. This work first reports the Dean's instability flow in high aspect ratio channels on the deka-microns level for [Formula: see text].
View Article and Find Full Text PDFPolydimethylsiloxane (PDMS) has been widely used to make lab-on-a-chip devices, such as reactors and sensors, for biological research. Real-time nucleic acid testing is one of the main applications of PDMS microfluidic chips due to their high biocompatibility and transparency. However, the inherent hydrophobicity and excessive gas permeability of PDMS hinder its applications in many fields.
View Article and Find Full Text PDFReal-time polymerase chain reaction (real-time PCR) tests were successfully conducted in an aluminum-based microfluidic chip developed in this work. The reaction chamber was coated with silicone-modified epoxy resin to isolate the reaction system from metal surfaces, preventing the metal ions from interfering with the reaction process. The patterned aluminum substrate was bonded with a hydroxylated glass mask using silicone sealant at room temperature.
View Article and Find Full Text PDFPhotodetectors with long detection distances and fast response are important media in constructing a non-contact human-machine interface for the Masterly Internet of Things (MIT). All-inorganic perovskites have excellent optoelectronic performance with high moisture and oxygen resistance, making them one of the promising candidates for high-performance photodetectors, but a simple, low-cost and reliable fabrication technology is urgently needed. Here, a dual-function laser etching method is developed to complete both the lyophilic split-ring structure and electrode patterning.
View Article and Find Full Text PDFElectrorheological (ER) fluid, containing polarized particles within an insulating liquid, represents a smart material, the mechanical properties of which can be altered mainly by an electric field. In this work, ER fluids based on cauliflower iron(ii) oxalate doped titanium particles show excellent rheological and wetting properties by the sample co-precipitation method. The morphology of the particles is observed by SEM and the molecular structure within the particles is obtained XRD and FTIR.
View Article and Find Full Text PDFBioengineering (Basel)
October 2022
With the evolution of the pandemic caused by the Coronavirus disease of 2019 (COVID-19), reverse transcriptase-polymerase chain reactions (RT-PCR) have invariably been a golden standard in clinical diagnosis. Nevertheless, the traditional polymerase chain reaction (PCR) is not feasible for field application due to its drawbacks, such as time-consuming and laboratory-based dependence. To overcome these challenges, a microchip-based ultrafast PCR system called SWM-02 was proposed to make PCR assay in a rapid, portable, and low-cost strategy.
View Article and Find Full Text PDF