Transient three-dimensional (3D) heat and moisture transfer simulations were conducted to analyze the thermal performances of the entire phase change material (PCM) integrated into firefighters' gloves. PCM was broken down into several segments to cover the back and palm of the hand but to avoid finger joints to keep hand functions. Parametric studies were performed to explore the effects of PCM melting temperatures, PCM locations in the glove and PCM layer thicknesses on the overall thermal performance improvement of firefighters' gloves.
View Article and Find Full Text PDFAppl Hum Factors Ergon Conf
January 2024
This work aims to investigate and develop a novel phase change material (PCM)-integrated firefighters' turnout gear technology that would significantly enhance the thermal protection of firefighters' bodies from thermal burn injuries under high-heat conditions (such as in fire scenes). This work established a 3D human thermal simulation to explore the thermal protection improvements of firefighters' turnout gear by using PCM segments under flashover and hazardous conditions. This simulation study will guide future experimental design and testing effectively and save time and effort.
View Article and Find Full Text PDFPhase change material (PCM) has been widely studied for efficient thermal management. This work is the first holistic experimental research on the temperature control performance of PCM-integrated firefighters' gloves. The results showed that the thermal protection time could be extended by 2-5 times in the direct contact to hot object tests and around 1.
View Article and Find Full Text PDFJ Environ Occup Sci
March 2022
Firefighter injures caused by burns and thermal stress occupies around 5%-10% of the total injuries annually. Glove is the thinnest/weakest components among the firefighter turnout gear, which can put firefighters, are at risk of severe wrist and hand burns during fire calls. Burns can occur quickly and enhancing the thermal protective performance of firefighters' gloves will prevent these burns.
View Article and Find Full Text PDFBiopolymer foams manufactured using CO enables a novel intersection for economic, environmental, and ecological impact but limited CO solubility remains a challenge. PHBV has low solubility in CO while PCL has high CO solubility. In this paper, PCL is used to blend into PBHV.
View Article and Find Full Text PDFEcological, health and environmental concerns are driving the need for bio-resourced foams for the building industry. In this paper, we examine foams made from polylactic acid (PLA) and micro cellulose fibrils (MCF). To ensure no volatile organic compounds in the foam, supercritical CO (sc-CO) physical foaming of melt mixed systems was conducted.
View Article and Find Full Text PDF