Publications by authors named "Weihua Dan"

Low mechanical strength is still the key question for collagen hydrogel consisting of nanofibrils as hard tissue repair scaffolds with no loss of biological function. In this work, novel collagen nanofibrous hydrogels with high mechanical strength were fabricated based on the pre-protection of trisodium citrate masked Zr(SO) solution for collagen self-assembling nanofibrils and then further coordination with Zr(SO) solution. The mature collagen nanofibrils with d-period were observed in Zr(IV) mediated collagen hydrogels by AFM when the Zr(IV) concentration was ≥ 10 mmol/L, and the distribution of zirconium element was uniform.

View Article and Find Full Text PDF

Ideal tissue-engineered skin scaffolds should possess integrated therapeutic effects and multifunctionality, such as broad-spectrum antibacterial properties, adjustable mechanical properties, and bionic structure. Acellular dermal matrix (ADM) has been broadly used in many surgical applications as an alternative treatment to the "gold standard" tissue transplantation. However, insufficient broad-spectrum antibacterial and mechanical properties for therapeutic efficacy limit the practical clinical applications of ADM.

View Article and Find Full Text PDF

The repair of wound damage has been a common problem in clinic for a long time. Inspired by the electroactive nature of tissues and the electrical stimulation of wounds in clinical practice, the next generation of wound therapy with self-powered electrical stimulator is expected to achieve the desired therapeutic effect. In this work, a two-layered self-powered electrical-stimulator-based wound dressing (SEWD) was designed through the on-demand integration of the bionic tree-like piezoelectric nanofiber and the adhesive hydrogel with biomimetic electrical activity.

View Article and Find Full Text PDF

Acellular dermal matrix (ADM) can be used as collagen-based biological patches for regeneration and repair of soft tissues in vivo. However, the problems of calcification and infection during treatment with patches can lead to premature patch failure and even to a severely increased risk of recurrence. In this study, first, porcine ADM (pADM) grafted with vinyl underwent an in situ cross-linking reaction in the presence of an initiator, while quaternary ammonium groups were introduced into the pADM during the cross-linking process to obtain MA-DMC-pADM, which is a biological patch with anti-infection and anti-calcification properties.

View Article and Find Full Text PDF

Collagen-based scaffolds lack mechanical strength, flexibility, and tunable pore structure, affecting tissue repair outcomes and restricting their wide clinical application. Here, two kinds of scaffolds were prepared by a combination of vacuum homogenization, natural air drying, water soaking, lyophilization, and crosslinking. Compared with the scaffolds made of collagen molecules (Col-M), the scaffolds made of collagen aggregates (Col-A) exhibited higher mechanical strength (ultimate tensile strength: 1.

View Article and Find Full Text PDF

Collagen is the most abundant protein in animals and one of the most important extracellular matrices that chronically plays an important role in biomaterials. However, the major concern about native collagen is the lack of its thermal stability and weak resistance to proteolytic degradation. Currently, a series of modification technologies have been explored for critical nature and stability enhancement in collagen matrix-based biomaterials, and prosperously large-scale progress has been achieved.

View Article and Find Full Text PDF

Skin wound healing is a complex process with multiple growth factors and cytokines participating and regulating each other. It is essential to develop novel wound dressings to accelerate the wound healing process. In this study, we developed the heparinized collagen scaffold materials (OL-pA), and the cross-linking reaction was based on the Schiff base reaction between pig acellular dermal matrix (pADM) and dialdehyde low molecular weight heparin (LMWH).

View Article and Find Full Text PDF

As a feasible solution to massive blood loss in emergencies, ensuring the availability of absorbable exogenous topical hemostatic materials is a major current focus. Among the available materials, collagen is a surprising presence, but that does not mean that it is an ideal material from every aspect. Collagen fibers (CFs) and collagen have the same composition in terms of matter, but they have differing spatial structures and hierarchies.

View Article and Find Full Text PDF

Biological patch is a kind of tissue substitute material derived from natural polymer materials for the repair of human soft tissue defects. The serious calcification of biological patch after implantation is one of the reasons for the decline and failure of patch. In previous studies, we synthesized a new biomaterial crosslinker epoxidized chitosan quaternary ammonium salt (EHTCC) and used it for the crosslinking of porcine acellular dermal matrix (pADM).

View Article and Find Full Text PDF

The anticoagulant properties of valve materials are essential to maintain blood patency after artificial valve implantation. Porcine acellular dermal matrix (pADM) has low immunogenicity, good biocompatibility, and can reduce calcification by eliminating heterogeneous cells. However, its main component is collagen, which has strong coagulation function and poor anticoagulant activity.

View Article and Find Full Text PDF

A simple and portable colorimetric sensor for colorimetric detection of UO in aqueous solution based on vinylphosphonic acid functionalized gold nanoparticles (VPA-AuNPs) has been developed. The VPA-AuNPs solution was prepared by sodium borohydride reduction in the presence of vinylphosphonic acid. The addition of UO would induce aggregation of VPA-AuNPs, resulting in the color change from wine-red to blue, and red-shift of the ultraviolet-visible (UV-vis) spectra.

View Article and Find Full Text PDF

Natural collagen has good biocompatibility and ability to promote tissue regeneration and repair, but the poor mechanical properties and intolerance of degradation of natural collagen limit its applications in the biomedical field. In this research, we synthesized a skin wound repair hydrogel with good biological activity, high strength and excellent water absorption properties. Inspired by the theory of wet healing, dopamine was introduced into the side chain of the water-absorbing polymer polyglutamic acid to synthesize a cross-linking agent (PGAD) with both water absorption and cell adhesion ablities, and then it was introduced into collagen/polyvinyl alcohol (PVA-COL) system to form a double network hydrogel.

View Article and Find Full Text PDF

As a biocompatible and bioactive natural tissue engineering collagen scaffold, porcine acellular dermal matrix (pADM) has limitations for the application in tissue regeneration due to its low strength and rapid biodegradation. Herein, to get a good wound dressing, the epoxy group was added to N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) to synthesize the epoxidized N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (EHTCC), and the porcine acellular dermal matrix was modified with EHTCC at different dosage of 0, 4, 8, 12, 16 and 20%. The properties of the EHTCC-pADM were evaluated.

View Article and Find Full Text PDF

Infection is a common complication in the process of wound management. An ideal wound dressing is supposed to reduce or even prevent the infection while promoting wound healing. A porcine acellular dermal matrix (pADM) has been already used as a wound dressing in clinic due to its capacity to accelerate wound healing.

View Article and Find Full Text PDF

A novel clay-reinforced polycaprolactone/chitosan/curcumin (PCl/CS/Clay/Cur) composite film was fabricated in this study. The prepared Cur-loading composite films were characterized with attenuated total reflection Fourier transformed infrared spectroscopy, scanning electron microscopy, atomic force microscopy, water contact angle, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction, and the results showed good dispersion of clay in the composite films. The addition of nanoclay was found to significantly increase the tensile strength.

View Article and Find Full Text PDF

Hemostatic materials based on collagen and chitin are commonly assessed with regard to their topical absorbability and bioactivity. However, their clinical application faces challenges such as relatively long hemostatic and wound healing times, single function, as well as wound bleeding in patients with blood diseases. Herein, a novel bio-inspired "cotton-like" collagen aggregate/chitin based biomaterial for rapid hemostatic and tissue repair (V-3D-Ag-col) was fabricated by a specific gradient-removal solvent approach.

View Article and Find Full Text PDF

Natural collagen has good biocompatibility and ability to promote tissue regeneration; however, its low flexibility and easy degradation hinder its applications in wound repair. In this study, we synthesized a skin wound-repairing hydrogel with good bioactivity and high toughness and adhesion. Inspired by the good adhesion of natural mussels, dopamine was grafted onto oxidized sodium alginate to synthesize a new crosslinker (COA), which was introduced into the collagen/polyacrylamide (PAM-Col) double network to synthesize hydrogel.

View Article and Find Full Text PDF

A growth of bacterial infections and over-and inefficient release of antibiotics forces one to search new antibacterial agents and/or strategies. In this study, a novel strategy towards biocompatible and antibacterial bilayer wound dressing was proposed by a two-step spin coating method combined with in-situ crosslinking polymerization. First, through in-situ crosslinking polymerization, [2-(methacryloyloxy) ethyl] trimethylammonium chloride ([MTA][Cl]) was polymerized and crosslinked in polycaprolactone (PCL) solution and PCL/PMTA solution was obtained.

View Article and Find Full Text PDF

Not only are the physicochemical properties and biocompatibility of biomaterials important considerations, but also their antibacterial properties. In this study, a novel chemically-cross-linked antibacterial porcine acellular dermal matrix (pADM) scaffold was fabricated according to a two-step method. A naturally-derived oxidized chitosan oligosaccharide (OCOS) was used to cross-linked pADM (termed OCOS-pADM) to improve its physicochemical properties.

View Article and Find Full Text PDF

Collagen-chitosan composite film modified with grapheme oxide (GO) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), termed CC-G-E film, was loaded with basic fibroblast growth factor (bFGF) as the development of an efficacious wound healing device. In this study we report a novel drug delivery system that prevents the initial burst release and loss of bioactivity of drugs in vitro and in vivo applications. The results showed that CC-G-E film possessed improved thermal stability and a higher rate of crosslinking with increased mechanical properties when the dosage of GO was between 0.

View Article and Find Full Text PDF

Despite its crucial role in directing cell fate in healthy and diseased tissues, improvements in physical-chemical properties and biocompatibility of type-I collagen are still needed. In this report, we described combined and facile method to modify collagen. The collagen film was first modified by procyanidins solution, in which, then subjected to further crosslinked by dialdehyde alginate, resulting in collagen-procyanidins-dialdehyde alginate film.

View Article and Find Full Text PDF

The aim of this study is to evaluate the effects of two different charged amino acids in collagen chains, lysine and glutamic acid, on the fibrillogenesis process of collagen molecules. The turbidity, zeta potential, and fiber diameter analysis suggest that introducing the positively charged lysine into collagen might improve the sizes or amounts of the self-assembled collagen fibrils significantly. Conversely, the negatively charged glutamic acid might restrict the self-assembly of collagen building blocks into a higher order structure.

View Article and Find Full Text PDF

Unlabelled: To improve the mechanical properties and biocompatibility of collagen I matrix, a novel and facile strategy was developed to modify porcine acellular dermal matrix (PADM) via dopamine self-polymerization followed by collagen immobilization to enhance the biological, mechanical and physicochemical properties of PADM. Mechanism study indicated that the polymerization of dopamine onto PADM surface could be regulated by controlling the amount of hydrogen bonds forming between phenol hydroxyl (COH) and nitrogen atom (NCO) within collagen fibers of PADM. The investigations of surface interactions between PDA and PADM illustrated that PDA-PADM system yielded better mechanical properties, thermal stability, surface hydrophilicity and the structural integrity of PADM was maintained after dopamine coating.

View Article and Find Full Text PDF

The objective of this study was to extract and characterize an advanced collagen aggregate (Ag-col) from porcine acellular dermal matrix (pADM). Based on histological examination, scanning electron microscopy (SEM) and atomic force microscope (AFM), Ag-col was composed of the D-periodic cross-striated collagen fibrils and thick collagen fiber bundles with uneven diameters and non-orientated arrangement. Fourier transform infrared (FTIR) spectra of pADM, Ag-col and Col were similar and revealed the presence of the triple helix.

View Article and Find Full Text PDF

The aim of this study is to evaluate the chemical crosslinking effects of the natural derived chitosan dialdehyde (OCS) on collagen. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and circular dichroism (CD) measurements suggest that introducing OCS might not destroy the natural triple helix conformation of collagen but enhance the thermal-stability of collagen. Meanwhile, a denser fibrous network of cross-linked collagen is observed by atomic force microscopy.

View Article and Find Full Text PDF