Publications by authors named "Weihe T"

Plasma-treated water (PTW) possess anti-microbial potential against , which is observable for both suspended cells and cells organized in biofilms. Against that background, the chemical composition of PTW tends to focus. Various analytical techniques have been applied for analyses, which reveal various traceable reactive oxygen and nitrogen compounds (RONS).

View Article and Find Full Text PDF

The control of the pathogenic load on foodstuffs is a key element in food safety. Particularly, seafood such as cold-smoked salmon is threatened by pathogens such as sp. or .

View Article and Find Full Text PDF

Plasma-generated compounds (PGCs) such as plasma-processed air (PPA) or plasma-treated water (PTW) offer an increasingly important alternative for the control of microorganisms in hard-to-reach areas found in several industrial applications including the food industry. To this end, we studied the antimicrobial capacity of PTW on the vitality and biofilm formation of , a common foodborne pathogen. Using a microwave plasma (MidiPLexc), 10 ml of deionized water was treated for 100, 300, and 900 s (pre-treatment time), after which the bacterial biofilm was exposed to the PTW for 1, 3, and 5 min (post-treatment time) for each pre-treatment time, separately.

View Article and Find Full Text PDF

This study evaluated the impact of a defined plasma treated water (PTW) when applied to various stages within fresh-cut endive processing. The quality characteristic responses were investigated to establish the impact of the PTW unit processes and where PTW may be optimally applied in a model process line to retain or improve produce quality. Different stages of application of PTW within the washing process were investigated and compared to tap water and chlorine dioxide.

View Article and Find Full Text PDF

The nutrition management guideline for very-long chain acyl-CoA dehydrogenase deficiency (VLCAD) is the fourth in a series of web-based guidelines focusing on the diet treatment for inherited metabolic disorders and follows previous publication of guidelines for maple syrup urine disease (2014), phenylketonuria (2016) and propionic acidemia (2019). The purpose of this guideline is to establish harmonization in the treatment and monitoring of individuals with VLCAD of all ages in order to improve clinical outcomes. Six research questions were identified to support guideline development on: nutrition recommendations for the healthy individual, illness management, supplementation, monitoring, physical activity and management during pregnancy.

View Article and Find Full Text PDF

The susceptibility of Candida albicans biofilms to a non-thermal plasma treatment has been investigated in terms of growth, survival and cell viability by a series of in vitro experiments. For different time periods, the C. albicans strain SC5314 was treated with a microwave-induced plasma torch (MiniMIP).

View Article and Find Full Text PDF

Microorganisms are predominantly organized in biofilms, where cells live in dense communities and are more resistant to external stresses than are their planktonic counterparts. With experiments, the susceptibility of biofilms to a nonthermal plasma treatment (plasma source, kINPen09) in terms of growth, survival, and cell viability was investigated. strain SC5314 (ATCC MYA-2876) was plasma treated for different time periods (30 s, 60 s, 120 s, 180 s, 300 s).

View Article and Find Full Text PDF

The ubiquitous molecule spermidine is known for its pivotal roles in the contact mediation, fusion, and reorganization of biological membranes and DNA. In our model system, borosilicate beads were attached to atomic force microscopy cantilevers and used to probe mica surfaces to study the details of the spermidine-induced attractions. The negative surface charges of both materials were largely constant over the measured pH range of pH 7.

View Article and Find Full Text PDF

Using single-cell force spectroscopy, we compared the initial adhesion of L929 fibroblasts to planar and nanostructured silicon substrates as a function of fibronectin concentration. The nanostructures were periodically grooved with a symmetric groove-summit period of 180 nm and a groove depth of 120 nm. Cell adhesion strength to the bare nanostructure was lower (79%± 13%) than to the planar substrate, which we attribute to reduced contact area.

View Article and Find Full Text PDF

Single-cell force spectroscopy was used to investigate the initial adhesion of L929 fibroblasts onto periodically grooved titanium microstructures (height ~6 μm, groove width 20 μm). The position-dependent local adhesion strength of the cells was correlated with their rheological behavior. Spherical cells exhibited a significantly lower Young's modulus (<1 kPa) than that reported for spread cells, and their elastic properties can roughly be explained by the Hertz model for an elastic sphere.

View Article and Find Full Text PDF