Plant architecture is a major determinant of planting density, which enhances productivity potential for crops per unit area. Genomic prediction is well positioned to expedite genetic gain of plant architectural traits since they are typically highly heritable. Additionally, the adaptation of genomic prediction models to query predictive abilities of markers tagging certain genomic regions could shed light on the genetic architecture of these traits.
View Article and Find Full Text PDFWest Nile virus (WNV), a flavivirus transmitted by mosquito bites, causes primarily mild symptoms but can also be fatal. Therefore, predicting and controlling the spread of West Nile virus is essential for public health in endemic areas. We hypothesized that socioeconomic factors may influence human risk from WNV.
View Article and Find Full Text PDFForward-looking sonar is a technique widely used for underwater detection. However, most sonar images have underwater noise and low resolution due to their acoustic properties. In recent years, the semantic segmentation model U-Net has shown excellent segmentation performance, and it has great potential in forward-looking sonar image segmentation.
View Article and Find Full Text PDFTransfus Apher Sci
December 2020
Riboflavin plus UV light pathogen reduction technology (RF-PRT) is an effective method for inactivating donor-derived leukocytes (DDLs) in blood components. Literature data have shown that reactive oxygen species (ROS) increased in lymphocytes after RF-PRT treatment. Sustained high levels of ROS may abolish the endogenous antioxidant system, leading to damage to proteins, lipids, and nucleic acids, resulting in cell apoptosis.
View Article and Find Full Text PDFLithium has many widely varying biochemical and phenomenological effects, suggesting that a systems biology approach is required to understand its action. Multiple lines of evidence point to lithium as a significant factor in development of cancer, showing that understanding lithium action is of high importance. In this paper we undertake first steps toward a systems approach by analyzing mutual enrichment between the interactomes of lithium-sensitive enzymes and the pathways associated with cancer.
View Article and Find Full Text PDFLithium has many widely varying biochemical and phenomenological effects, suggesting that a systems biology approach is required to understand its action. Multiple lines of evidence point to lithium intake and consequent blood levels as important determinants of incidence of neurodegenerative disease, showing that understanding lithium action is of high importance. In this paper we undertake first steps toward a systems approach by analyzing mutual enrichment between the interactomes of lithium-sensitive enzymes and the pathways associated with affective and neurodegenerative disorders.
View Article and Find Full Text PDFAssociation studies have been successful at identifying genomic regions associated with important traits, but routinely employ models that only consider the additive contribution of an individual marker. Because quantitative trait variability typically arises from multiple additive and non-additive sources, utilization of statistical approaches that include main and two-way interaction marker effects of several loci in one model could lead to unprecedented characterization of these sources. Here we examine the ability of one such approach, called the Stepwise Procedure for constructing an Additive and Epistatic Multi-Locus model (SPAEML), to detect additive and epistatic signals simulated using maize and human marker data.
View Article and Find Full Text PDFWe introduce and study an extended "t-U-J" two-orbital model for the pnictides that includes Heisenberg terms deduced from the strong coupling expansion. Including these J terms explicitly allows us to enhance the strength of the (π,0)-(0,π) spin order which favors the presence of tightly bound pairing states even in the small clusters that are here exactly diagonalized. The A(1g) and B(2g) pairing symmetries are found to compete in the realistic spin-ordered and metallic regime.
View Article and Find Full Text PDFUsing numerical simulations, we report an observation of a novel tunable ultra-deep subwavelength nanolithography technique using a surface plasmon resonant cavity formed by a metallic grating and a metallic thin-film layer separated by a photoresist layer. The tuning capability is implemented by varying the cavity length, from which surface plasmon interferometric patterns with inherently higher optical resolution than that of conventional surface plasmon techniques are generated in the cavity of photoresist layer. The physical origin of the tunability is analytically confirmed by the dispersion relation derived from the cavity system.
View Article and Find Full Text PDF