Publications by authors named "Weiguo Sheng"

This article is concerned with the distributed set-membership fusion estimation problem for a class of artificial neural networks (ANNs), where the dynamic event-triggered mechanism (ETM) is utilized to schedule the signal transmission from sensors to local estimators to save resource consumption and avoid data congestion. The main purpose of this article is to design a distributed set-membership fusion estimation algorithm that ensures the global estimation error resides in a zonotope at each time instant and, meanwhile, the radius of the zonotope is ultimately bounded. By means of the zonotope properties and the linear matrix inequality (LMI) technique, the zonotope restraining the prediction error is first calculated to improve the prediction accuracy and subsequently, the zonotope enclosing the local estimation error is derived to enhance the estimation performance.

View Article and Find Full Text PDF

Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback.

View Article and Find Full Text PDF

This article is concerned with a new partial-neurons-based proportional-integral observer (PIO) design problem for a class of artificial neural networks (ANNs) subject to bounded disturbances. For the purpose of improving the reliability of the data transmission, the multiple description encoding mechanisms are exploited to encode the measurement data into two identically important descriptions, and the encoded data are then transmitted to the decoders via two individual communication channels susceptible to packet dropouts, where Bernoulli-distributed stochastic variables are utilized to characterize the random occurrence of the packet dropouts. An explicit relationship is discovered that quantifies the influences of the packet dropouts on the decoding accuracy, and a sufficient condition is provided to assess the boundedness of the estimation error dynamics.

View Article and Find Full Text PDF

This brief is concerned with the problem of kernel adaptive filtering for a complex network. First, a coupled kernel least mean square (KLMS) algorithm is developed for each node to uncover its nonlinear measurement function by using a series of input-output data. Subsequently, an upper bound is derived for the step-size of the coupled KLMS algorithm to guarantee the mean square convergence.

View Article and Find Full Text PDF

This paper is concerned with the dynamic event-triggered set-membership state estimation issue for a class of multirate networked systems subject to unknown but bounded disturbance and noise. To economize the limited communication resource when performing the desired networked estimation task, a dynamic event-triggered transmission mechanism is proposed to significantly reduce the frequency of sensor data transmissions. A key issue of the addressed problem is to construct a zonotopic outer approximation set to bound the set of states that are consistent with the disturbed system model and the noisy measured outputs.

View Article and Find Full Text PDF

As data sources become ever more numerous with increased feature dimensionality, feature selection for multiview data has become an important technique in machine learning. Semi-supervised multiview feature selection (SMFS) focuses on the problem of how to obtain a discriminative feature subset from heterogeneous feature spaces in the case of abundant unlabeled data with little labeled data. Most existing methods suffer from unreliable similarity graph structure across different views since they separate the graph construction from feature selection and use the fixed graphs that are susceptible to noisy features.

View Article and Find Full Text PDF

The novel coronavirus pneumonia (COVID-19) has created great demands for medical resources. Determining these demands timely and accurately is critically important for the prevention and control of the pandemic. However, even if the infection rate has been estimated, the demands of many medical materials are still difficult to estimate due to their complex relationships with the infection rate and insufficient historical data.

View Article and Find Full Text PDF

In this article, a delay-range-dependent approach is put forward to tackle the state estimation problem for delayed impulsive neural networks. A new type of nonlinear function, which is more general than the normal sigmoid function and functions constrained by the Lipschitz condition, is adopted as the neuron activation function. To effectively alleviate data collisions and save energy, the round-robin protocol is utilized to mitigate the occurrence of unnecessary network congestion in communication channels from sensors to the estimator.

View Article and Find Full Text PDF

This article addresses the simultaneous state and unknown input estimation problem for a class of discrete time-varying complex networks (CNs) under redundant channels and dynamic event-triggered mechanisms (ETMs). The redundant channels, modeled by an array of mutually independent Bernoulli distributed stochastic variables, are exploited to enhance transmission reliability. For energy-saving purposes, a dynamic event-triggered transmission scheme is enforced to ensure that every sensor node sends its measurement to the corresponding estimator only when a certain condition holds.

View Article and Find Full Text PDF

Clustering, as an important part of data mining, is inherently a challenging problem. This article proposes a differential evolution algorithm with adaptive niching and k -means operation (denoted as DE_ANS_AKO) for partitional data clustering. Within the proposed algorithm, an adaptive niching scheme, which can dynamically adjust the size of each niche in the population, is devised and integrated to prevent premature convergence of evolutionary search, thus appropriately searching the space to identify the optimal or near-optimal solution.

View Article and Find Full Text PDF

This article is concerned with the problem of finite-horizon H state estimation for time-varying coupled stochastic networks through the round-robin scheduling protocol. The inner coupling strengths of the considered coupled networks are governed by a random sequence with known expectations and variances. For the sake of mitigating the occurrence probability of the network-induced phenomena, the communication network is equipped with the round-robin protocol that schedules the signal transmissions of the sensors' measurement outputs.

View Article and Find Full Text PDF

Our previous study has constructed a deep learning model for predicting gastrointestinal infection morbidity based on environmental pollutant indicators in some regions in central China. This article aims to adapt the prediction model for three purposes: 1) predicting the morbidity of a different disease in the same region; 2) predicting the morbidity of the same disease in a different region; and 3) predicting the morbidity of a different disease in a different region. We propose a tridirectional transfer learning approach, which achieves the abovementioned three purposes by: 1) developing a combined univariate regression and multivariate Gaussian model for establishing the relationship between the morbidity of the target disease and that of the source disease together with the high-level pollutant features in the current source region; 2) using mapping-based deep transfer learning to extend the current model to predict the morbidity of the source disease in both source and target regions; and 3) applying the pattern of the combined model in the source region to the extended model to derive a new combined model for predicting the morbidity of the target disease in the target region.

View Article and Find Full Text PDF

This article investigates the mixed H/H state estimation problem for a class of discrete-time switched complex networks with random coupling strengths through redundant communication channels. A sequence of random variables satisfying certain probability distributions is employed to describe the stochasticity of the coupling strengths. A redundant-channel-based data transmission mechanism is adopted to enhance the reliability of the transmission channel from the sensor to the estimator.

View Article and Find Full Text PDF

This article deals with the recursive filtering issue for a class of nonlinear complex networks (CNs) with switching topologies, random sensor failures and dynamic event-triggered mechanisms. A Markov chain is utilized to characterize the switching behavior of the network topology. The phenomenon of sensor failures occurs in a random way governed by a set of stochastic variables obeying certain probability distributions.

View Article and Find Full Text PDF

This paper investigates the event-triggered (ET) tracking control problem for a class of discrete-time strict-feedback nonlinear systems subject to both stochastic noises and limited controller-to-actuator communication capacities. The ET mechanism with fixed triggering threshold is designed to decide whether the current control signal should be transmitted to the actuator. A systematic framework is developed to construct a novel adaptive neural controller by directly applying the backstepping procedure to the underlying system.

View Article and Find Full Text PDF

Recent studies in multiobjective particle swarm optimization (PSO) have the tendency to employ Pareto-based technique, which has a certain effect. However, they will encounter difficulties in their scalability upon many-objective optimization problems (MaOPs) due to the poor discriminability of Pareto optimality, which will affect the selection of leaders, thereby deteriorating the effectiveness of the algorithm. This paper presents a new scheme of discriminating the solutions in objective space.

View Article and Find Full Text PDF

This paper proposes a novel event-triggered (ET) adaptive neural control scheme for a class of discrete-time nonlinear systems in a strict-feedback form. In the proposed scheme, the ideal control input is derived in a recursive design process, which relies on system states only and is unrelated to virtual control laws. In this case, the high-order neural networks (NNs) are used to approximate the ideal control input (but not the virtual control laws), and then the corresponding adaptive neural controller is developed under the ET mechanism.

View Article and Find Full Text PDF

This paper focuses on the observer-based output-feedback control (OBOFC) problem for a class of discrete-time strict-feedback nonlinear systems (DTSFNSs) with both multiplicative process noises and additive measurement noises. A state observer is first designed to estimate immeasurable system states, and then a novel observer-based backstepping control framework is proposed for DTSFNSs with known model information. To be specific, virtual control laws and the actual control law are derived using a variable substitution method that gets rid of the repeated accumulation of measurement noises in the recursive process.

View Article and Find Full Text PDF

Recently telecom fraud has become a serious problem especially in developing countries such as China. At present, it can be very difficult to coordinate different agencies to prevent fraud completely. In this paper we study how to detect large transfers that are sent from victims deceived by fraudsters at the receiving bank.

View Article and Find Full Text PDF
Article Synopsis
  • Passenger profiling is essential for enhancing commercial aviation security, but traditional methods struggle with large volumes of electronic data.
  • The paper introduces a deep learning method using a Pythagorean fuzzy deep Boltzmann machine (PFDBM) to optimize how features are learned and evaluated for passenger classification.
  • Experimentation with data from Air China demonstrates that this approach significantly improves learning abilities and classification accuracy compared to existing profiling techniques, with potential applications in complex pattern analysis.
View Article and Find Full Text PDF

Objective: To establish the HPLC fingerprints of Phyllanthus urinaria L.

Methods: The HPLC was used to establish the fingerprint of Phyllanthus urinaria.

Results: The HPLC fingerprint profiles of Phyllanthus urinaria contains 10 common peaks.

View Article and Find Full Text PDF

Clustering is inherently a difficult problem, both with respect to the construction of adequate objective functions as well as to the optimization of the objective functions. In this paper, we suggest an objective function called the Weighted Sum Validity Function (WSVF), which is a weighted sum of the several normalized cluster validity functions. Further, we propose a Hybrid Niching Genetic Algorithm (HNGA), which can be used for the optimization of the WSVF to automatically evolve the proper number of clusters as well as appropriate partitioning of the data set.

View Article and Find Full Text PDF