Publications by authors named "Weiguo Bian"

Context: Total knee arthroplasty (TKA) and total hip arthroplasty (THA) have become well-established and standardized procedures. However, complications can easily occur, such as joint pain and swelling, due to the high trauma of surgery and intraoperative blood loss, which can affect patients' recovery. A treatment that can effectively shorten postoperative recovery time and reduce complications is key to the perioperative treatment of TKA and THA.

View Article and Find Full Text PDF

Background: Metagenomic next-generation sequencing (mNGS) is a culture-independent massively parallel DNA sequencing technology and it has been widely used for rapid etiological diagnosis with significantly high positivity rate. Currently, clinical studies on evaluating the influence of previous antimicrobial therapy on positivity rate of mNGS in PJIs are rarely reported. The present study aimed to investigate whether the positivity rate of mNGS is susceptible to previous antimicrobial therapy.

View Article and Find Full Text PDF

Recent studies have shown that chondrocyte ferroptosis contributes importantly to the pathogenesis of osteoarthritis (OA). However, it is largely unknown how it is regulated. In this study, the data sets GSE167852 and GSE190184 were downloaded from the Gene Expression Omnibus (GEO) database, and 161 differentially expressed genes (DEGs) related to ferroptosis were screened by bioinformatics analysis.

View Article and Find Full Text PDF

Recent studies have shown that Solute Carrier Family 9 Member A2 (SLC9A2) could serve as a biomarker for cancer. However, its mechanism of action in osteosarcoma (OS) was still unclear. In this study, the data sets GSE154530 and GSE99671 were downloaded from the Gene Expression Omnibus (GEO) database, and 31 differentially expressed genes (DEGs) related to methylation were screened by bioinformatics analysis tools.

View Article and Find Full Text PDF

Background: The aim of this study was to assess the feasibility and outcomes of standardized three-dimensional (3D)-printed trabecular titanium (TT) cups and augments to reconstruct most acetabular defects.

Methods: We included 58 patients with Paprosky type II and III acetabular bone defects who underwent revision hip arthroplasty between 2015 and 2018. Patients who were revised without 3D-printed augments, and cases who were lost to follow-up and died during follow-up were excluded.

View Article and Find Full Text PDF

Objective: This study investigated the underlying mechanisms of high fracture incidence in the femoral isthmus from a biomechanical perspective.

Methods: We retrospectively analyzed a total of 923 primary total hip arthroplasty (THA) patients and 355 osteoporosis (OP) patients admitted from January 2010 to January 2018. Through a series of screening conditions, 47 patients from each group were selected for inclusion in the study.

View Article and Find Full Text PDF

Cartilage defects caused by mechanical tear and wear are challenging clinical problems. Articular cartilage has unique load-bearing properties and limited self-repair ability. The current treatment methods, such as microfractures and autogenous cartilage transplantation to repair full-thickness cartilage defects, have apparent limitations.

View Article and Find Full Text PDF

Coronary stents are deployed to treat the coronary artery disease (CAD) by reopening stenotic regions in arteries to restore blood flow, but the risk of the in-stent restenosis (ISR) is high after stent implantation. One of the reasons is that stent implantation induces changes in local hemodynamic environment, so it is of vital importance to study the blood flow in stented arteries. Based on regarding the red blood cell (RBC) as a rigid solid particle and regarding the blood (including RBCs and plasma) as particle suspensions, a non-Newtonian particle suspensions model is proposed to simulate the realistic blood flow in this work.

View Article and Find Full Text PDF

Mg and its alloys have been comprehensively studied and show huge potential for clinical orthopedic applications. However, balancing the mechanical strength and corrosion resistance of alloys is still a challenge. In light of this, micro-level contents of Zn and Ca were added to pure Mg to fabricate a Mg-2Zn-0.

View Article and Find Full Text PDF

This study aimed to evaluate the safety and efficacy of the special WE43 magnesium alloy stretch plates (SPs) used as fixation device for anterior cruciate ligament (ACL) reconstruction in a beagle model. Eleven beagle dogs underwent ACL reconstruction using WE43 SPs to fix the ligament grafts with the femoral ends, whereas titanium interferences were employed in the tibia ends. Load-to-failure tests were conducted to evaluate the mechanical properties.

View Article and Find Full Text PDF

The goal of this study was to develop a bionic fixation device based on the use of a tricalcium phosphate/polyether ether ketone anchor and harvesting of the ulnar carpal flexor muscle tendon for application as a ligament graft in a beagle anterior cruciate ligament (ACL) reconstruction model, with the goal of accelerating the ligament graft-to-bone tunnel healing and providing a robust stability through exploration of this new kind of autologous ligament graft. The safety and efficacy of this fixation device were explored 3 and 6 months after surgery in a beagle ACL reconstruction model using biomechanical tests and comprehensive histological observation. The data were compared using a two-tailed Student's t test and a paired t test.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate the molecular mechanisms behind osteoarthritis (OA) and pinpoint potential therapeutic gene targets.
  • It analyzed microarray data from synovial membrane samples of early and late-stage knee OA patients, identifying over 1,200 differentially expressed genes (DEGs) that were compared with healthy samples.
  • Key proteins and transcription factors (like AGT, CXCL12, and KDM2B) were identified as significant in the disease's development, suggesting their potential roles in OA treatment strategies.
View Article and Find Full Text PDF

Background: There is a lack of understanding of the morphological characteristics of the cartilage-bone interface. Materials that are currently being used in tissue engineering do not adequately support the regeneration of bone and cartilage tissues. The present study aimed to explore the morphological characteristics of cartilage-bone transitional structures in the human knee joint and to design a biomimetic osteochondral scaffold based on morphological data.

View Article and Find Full Text PDF

Aim: The aim of the present study was to investigate the association between tumor necrosis factor related apoptosis-inducing ligand (TRAIL) gene polymorphisms and the susceptibility and severity of lumbar disc degeneration (LDD) in the Chinese Han population.

Methods: A total of 153 patients with LDD and 131 healthy subjects were enrolled in the study. Four single-nucleotide polymorphisms (SNPs) in the 3' untranslated region (3'UTR) of TRAIL gene, including 1289 C/A, 1525 G/A, 1588 G/A and 1595 C/T, were genotyped with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis.

View Article and Find Full Text PDF

Interface integration between chondral phase and osseous phase is crucial in engineered osteochondral scaffolds. However, the integration was poorly understood and commonly failed to meet the need of osteochondral scaffolds. In this paper, a biphasic polyethylene glycol (PEG)/β-tricalcium phosphate (β-TCP) scaffold with enhanced interfacial integration was developed.

View Article and Find Full Text PDF

Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model.

View Article and Find Full Text PDF

Loss of ligament graft tension in early postoperative stages following anterior cruciate ligament (ACL) reconstruction can come from a variety of factors, with slow graft integration to bone being widely viewed as a chief culprit. Toward an off-the-shelf ACL graft that can rapidly integrate to host tissue, we have developed a silk-based ACL graft combined with a tricalcium phosphate (TCP)/polyether ether ketone anchor. In the present study we tested the safety and efficacy of this concept in a porcine model, with postoperative assessments at 3months (n=10) and 6months (n=4).

View Article and Find Full Text PDF

Objective: To investigate whether subchondral bone microstructural parameters are related to cartilage repair during large osteochondral defect repairing based on three-dimensional (3-D) printing technique.

Methods: Biomimetic biphasic osteochondral composite scaffolds were fabricated by using 3-D printing technique. The right trochlea critical sized defects (4.

View Article and Find Full Text PDF

Objective: To solve the fixation problem between ligament grafts and host bones in ligament reconstruction surgery by using ligament-bone composite scaffolds to repair the ligaments, to explore the fabrication method for ligament-bone composite scaffolds based on three-dimensional (3-D) printing technique, and to investigate their mechanical and biological properties in animal experiments.

Methods: The model of bone scaffolds was designed using CAD software, and the corresponding negative mould was created by boolean operation. 3-D printing techinique was employed to fabricate resin mold.

View Article and Find Full Text PDF

Bone-tendon-bone autograft represents a gold-standard for anterior cruciate ligament (ACL) reconstruction but at the cost of a secondary surgical site that can be accompanied by functional impairment and discomfort. Although numerous in vitro and in vivo studies have investigated tissue engineering alternatives to autografting, the achievement of a functional histological transition between soft and hard tissue has remained elusive. To bridge this gap we developed and tested a novel multiphase scaffold of silk, tricalcium phosphate (TCP) and polyether ether ketone for ACL reconstruction.

View Article and Find Full Text PDF

Background: Stabilization and bone healing of fractures in weight-bearing long bones are challenging. This study was conducted to evaluate the effect of a scaffold composed of chitosan fiber and calcium phosphate ceramics (CF/CPC scaffold) on stability and fracture repair in weight-bearing long bones.

Material/methods: Comminuted fractures of paired radiuses were created in 36 healthy, mature dogs.

View Article and Find Full Text PDF

Referring to the anatomical characterization of natural spongy bone and channel network in cortical bone, we designed a new pattern of biomimetic impalnt with preset channel for blood vessel inserting to treat early femoral head necrosis. The surgical ptrocedure was simulated by CAD model. Ceramic stereolithography was applied to fabricate the green part.

View Article and Find Full Text PDF

Being a multi-etiological factors disease, osteonecrosis of the femoral head affects many young people, leading to the collapse of the femur head; eventually the hip arthroplasty is needed if not treated in time. Unfortunately, as yet, no satisfactory therapy to repair necrotic bone at an early stage is present. Novel implants with pre-set channels were designed for the treatment of early femoral head necrosis.

View Article and Find Full Text PDF

Objective: To assess the osseointegration capability of hydroxyapatite-coated porous titanium with bone morphogenetic protein-2 (BMP-2) and hyaluronic acid to repair defects in the distal femur metaphysis in rabbits.

Methods: Porous titanium implants were made by sintering titanium powder at high temperature, which were coated with hydroxyapatite by alkali and heat treatment and with BMP-2 combined with bone regeneration materials. And hyaluronic acid was further used as delivery system to prolong the effect of BMP-2.

View Article and Find Full Text PDF