Publications by authors named "Weigmann B"

Background: Tofacitinib, as inhibitor of Janus kinases (JAK), interrupts the transmission of numerous pro-inflammatory cytokines involved in the pathogenesis of inflammatory bowel diseases (IBD). Therefore, tofacitinib provides a potent option to treat ulcerative colitis (UC). Besides the anti-inflammatory potential, inhibition of widespread JAKs carries the risk of side effects.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammatory bowel disease (IBD) is an autoimmune condition causing severe bowel issues, with unclear causes and no current effective treatments.
  • A study investigated the effects of a combination of flavonoids, specifically apigenin and EGCG, on IBD and found they boosted intestinal barrier function and reduced inflammation in lab and animal models.
  • The flavonoid treatment not only lowered harmful pro-inflammatory cytokines but also increased beneficial anti-inflammatory cytokines and positively changed gut microbiota, suggesting a potential new therapy for IBD.
View Article and Find Full Text PDF

The immune microenvironment plays an important role in the regulation of diseases. The characterization of the cellular composition of immune cell infiltrates in diseases and respective models is a major task in pathogenesis research and diagnostics. For the assessment of immune cell populations in tissues, fluorescence-activated cell sorting (FACS) or immunohistochemistry (IHC) are the two most common techniques presently applied, but they are cost intensive, laborious, and sometimes limited by the availability of suitable antibodies.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a type of inflammatory bowel disease characterized by inflammation, ulcers and irritation of the mucosal lining. Oral drug delivery in UC encounters challenges because of multifaceted barriers. Dexamethasone-loaded galactosylated-PLGA/Eudragit S100/pullulan nanocargoes (Dexa-GP/ES/Pu NCs) have been developed with a dual stimuli-sensitive coating responsive to both colonic pH and microbiota, and an underneath galactosylated-PLGA core (GP).

View Article and Find Full Text PDF

IL-3 has been reported to be involved in various inflammatory disorders, but its role in inflammatory bowel disease (IBD) has not been addressed so far. Here, we determined IL-3 expression in samples from patients with IBD and studied the impact of or deficiency on T cell-dependent experimental colitis. We explored the mechanical, cytoskeletal and migratory properties of and T cells using real-time deformability cytometry, atomic force microscopy, scanning electron microscopy, fluorescence recovery after photobleaching and and cell trafficking assays.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a group of disorders that cause chronic non-specific inflammation in the gastrointestinal (GI) tract, primarily affecting the ileum and colon. The incidence of IBD has risen sharply in recent years. Despite continuous research efforts over the past decades, the aetiology of IBD is still not fully understood and only a limited number of drugs are available for its treatment.

View Article and Find Full Text PDF

Colon mucosal inflammation attracts a plethora of immune cells with overexpressed surface receptors. Colon drug targeting can be aided by exploiting overexpressed cell surface receptors which improve drug site retention for an extended period. We developed Tofacitinib citrate (Tofa) loaded transferrin anchored PLGA nanocarriers (Tofa-P/tfr NCs) the quality by design (QbD) approach for specific binding to the transferrin receptor (TFR-1/CD71) overexpressed on macrophages and colon epithelial cells.

View Article and Find Full Text PDF

The mechanism of RNA interference (RNAi) could represent a breakthrough in the therapy of all diseases that arise from a gene defect or require the inhibition of a specific gene expression. In particular, small interfering RNA (siRNA) offers an attractive opportunity to achieve a new milestone in the therapy of human diseases. The limitations of siRNA, such as poor stability, inefficient cell uptake, and undesired immune activation, as well as the inability to specifically reach the target tissue in the body, can be overcome by further developments in the field of nanoparticulate drug delivery.

View Article and Find Full Text PDF

Gut-related diseases like ulcerative colitis, Crohn's disease, or colorectal cancer affect millions of people worldwide. It is an ongoing process finding causes leading to the development and manifestation of those disorders. This is highly relevant since understanding molecular processes and signalling pathways offers new opportunities in finding novel ways to interfere with and apply new pharmaceuticals.

View Article and Find Full Text PDF

Background And Aims: Colorectal cancer [CRC] is one of the most frequent malignancies, but the molecular mechanisms driving cancer growth are incompletely understood. We characterised the roles of the cytokine IL-9 and Th9 cells in regulating CRC development.

Methods: CRC patient samples and samples from AOM/DSS treated mice were analysed for expression of IL-9, CD3, and PU.

View Article and Find Full Text PDF

Background: Clinical challenges in inflammatory bowel diseases require microscopic in vivo evaluation of inflammation. Here, label-free imaging holds great potential, and recently, our group demonstrated the advantage of using in vivo multiphoton endomicroscopy for longitudinal animal studies. This article extends our previous work by in-depth analysis of label-free tissue features in common colitis models quantified by the multiphoton colitis score (MCS).

View Article and Find Full Text PDF

Objective: Increased apoptotic shedding has been linked to intestinal barrier dysfunction and development of inflammatory bowel diseases (IBD). In contrast, physiological cell shedding allows the renewal of the epithelial monolayer without compromising the barrier function. Here, we investigated the role of live cell extrusion in epithelial barrier alterations in IBD.

View Article and Find Full Text PDF

Introduction: Inflammatory bowel disease (IBD) is the inflammatory condition of the gastrointestinal tract particularly affecting the colon and the ileum. IBD patients can have a very poor quality of life because of the limited therapeutic efficacy and accompanied adverse effects.

Areas Covered: The potential ways to employ nanoparticles to deliver drugs to a certain site of inflammation are discussed.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a comprehensive term for chronic or relapsing inflammatory diseases occurring in the intestinal tract, generally including Crohn's disease (CD) and ulcerative colitis (UC). Presently, the pathogenesis of IBD is unknown, yet multiple factors have been reported to be related with the development of IBD. Flavonoids are phytochemicals with biological activity, which are ubiquitously distributed in edible plants, such as fruits and vegetables.

View Article and Find Full Text PDF

Alternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33.

View Article and Find Full Text PDF

Background: Platelets play an important role in the pathogenesis of inflammatory and proliferative vascular changes. The aim of this study was to investigate whether human platelets are able to induce transplant arteriosclerosis in a humanized C57/Bl6-Rag2-/-γc-/- mouse xenograft model.

Methods: Nonactivated and in vitro-activated human platelets were analyzed and phenotyped for surface markers by flow cytometry.

View Article and Find Full Text PDF

Background & Aims: The molecular checkpoints driving T cell activation and cytokine responses in ulcerative colitis (UC) are incompletely understood. Here, we studied the Tec kinase ITK in UC.

Methods: We analyzed patients with inflammatory bowel disease (n = 223) and evaluated ITK activity as well as the functional effects of cyclosporine-A (CsA).

View Article and Find Full Text PDF
Article Synopsis
  • - The study examined how CD56-expressing natural killer cells and invariant NK T cells influence allergic reactions in a humanized mouse model specifically created for studying gut and lung inflammation caused by allergens.
  • - Researchers injected mice with different types of human immune cells and allergens to observe the resulting inflammation, finding that those injected with CD56-depleted immune cells had less allergen-specific IgE and reduced inflammation compared to other groups.
  • - The findings suggest that certain immune cells, particularly CD56CD3 iNKT cells, actually enhance allergic inflammation, indicating potential targets for new treatments in allergic diseases.
View Article and Find Full Text PDF

Background: Mas gene-related G protein-coupled receptors (MRGPRs) are a G protein-coupled receptor family responsive to various exogenous and endogenous agonists, playing a fundamental role in pain and itch sensation. The primate-specific family member MRGPRX2 and its murine orthologue MRGPRB2 are expressed by mast cells mediating IgE-independent signaling and pseudoallergic drug reactions.

Objectives: Our aim was to increase knowledge about the function and regulation of MRGPRX2/MRGPRB2, which is of major importance in prevention of drug hypersensitivity reactions and drug-induced pruritus.

View Article and Find Full Text PDF

ITK (IL-2-inducible tyrosine kinase) belongs to the Tec family kinases and is mainly expressed in T cells. It is involved in TCR signalling events driving processes like T cell development as well as Th2, Th9 and Th17 responses thereby controlling the expression of pro-inflammatory cytokines. Studies have shown that ITK is involved in the pathogenesis of autoimmune diseases as well as in carcinogenesis.

View Article and Find Full Text PDF

Background & Aims: The molecular mechanism of action of the Janus kinase (JAK) inhibitor tofacitinib is poorly understood.

Methods: Here, we analysed the inhibitory effect of tofacitinib on mucosal and blood T cells from patients with ulcerative colitis (UC). Furthermore tofacitinib treatment was analysed in experimental colitis models and wound healing.

View Article and Find Full Text PDF

Immune microenvironment plays a critical role in lung cancer control versus progression and metastasis. In this investigation, we explored the effect of tumor-infiltrating lymphocyte subpopulations on lung cancer biology by studying in vitro cocultures, in vivo mouse models, and human lung cancer tissue. Lymphocyte conditioned media (CM) induced epithelial-mesenchymal transition (EMT) and migration in both primary human lung cancer cells and cell lines.

View Article and Find Full Text PDF

In type 1 diabetes, the appearance of islet autoantibodies indicates the onset of islet autoimmunity, often many years before clinical symptoms arise. While T cells play a major role in the destruction of pancreatic beta cells, molecular underpinnings promoting aberrant T cell activation remain poorly understood. Here, we show that during islet autoimmunity an miR142-3p/Tet2/Foxp3 axis interferes with the efficient induction of regulatory T (Treg) cells, resulting in impaired Treg stability in mouse and human.

View Article and Find Full Text PDF