Publications by authors named "Weige Zhang"

Microtubules are recognized as one of the most vital and attractive targets in anticancer therapy. The development of novel tubulin-targeting agents with a new action mechanism is imperative. Based on the hydrophobic tagging strategy, the molecular scaffold of tirbanibulin was selected as tubulin target-binding moiety, subsequent to which a series of target compounds were rationally designed by selecting various combinations of linkers and hydrophobic tags.

View Article and Find Full Text PDF

ZLDI-8 is an A disintegrin and metalloproteinase domain 17 (ADAM17) inhibitor that suppresses the shedding of Notch1 to the Notch1 intracellular domain (NICD). In previous studies, we found that ZLDI-8 was able to sensitize HCC to sorafenib, but the mechanism of action remains unclear. The sensitizing effects of ZLDI-8 were tested both in vitro and in vivo.

View Article and Find Full Text PDF

The colchicine binding site on tubulin has been widely acknowledged as an attractive target for anticancer drug exploitation. Here, we reported the structural optimization of the lead compound 4, which was proved in our previous work as a colchicine binding site inhibitor (CBSI). Based on docking researches for the active binding conformation of compound 4, a series of novel 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d][1,2,3]triazole derivatives (9a-9x) were developed by replacing a CH group in the 1H-benzo[d]imidazole skeleton of compound 4 with a nitrogen atom as a hydrogen bond acceptor.

View Article and Find Full Text PDF

Tubulin/colchicine-binding site inhibitors (CBSIs) co-crystal structures play an important role in the exploration of novel small molecules for oncotherapy. Based on the analysis of the binding models of tubulin and reported CBSIs, a series of 6-aryl-2-(3,4,5-trimethoxyphenyl)thiazole[3,2-b][1,2,4]triazoles were designed as potential tubulin polymerization inhibitors by binding to distinct colchicine domain of tubulin. Among the compounds synthesized, 7w not only shown noteworthy potency against SGC-7901 cancer cell line (IC = 0.

View Article and Find Full Text PDF

A series of new tubulin inhibitors containing chalcogen bonds have been discovered. Density functional theory (DFT) analysis of the O-C-C-S torsion profile shows a preference of 0.8 kcal/mol for the syn-conformer over the anti-conformer.

View Article and Find Full Text PDF

Tumor angiogenesis is closely associated with the metastasis and progression of non-small cell lung cancer (NSCLC), a highly vascularized solid tumor. However, novel therapeutics are lacking for the treatment of this cancer. Here, we developed a series of 2-aryl-4-(3,4,5-trimethoxy-benzoyl)-5-substituted-1,2,3-triazol analogs (6a-6x) as tubulin colchicine-binding site inhibitors, aiming to find a novel promising drug candidate for NSCLC treatment.

View Article and Find Full Text PDF

Nonsmall cell lung cancer (NSCLC) is one of the most common malignancies and needs novel and effective chemotherapy. In this study, our purpose is to explore the anticancer effects of 2-methoxy-5((3,4,5-trimethosyphenyl) seleninyl) phenol (SQ) on human NSCLC (A549 and H460) cells. We found that SQ suppressed the proliferation of NSCLC cells in time- and dose-dependent manners, and blocked the cells at G2/M phase, which was relevant to microtubule depolymerization.

View Article and Find Full Text PDF

A series of new colchicine glycoconjugates as tubulin polymerization inhibitors were designed by targeting strategy based on Warburg effect. All of the colchicine glycoconjugates were synthesized and then evaluated for their antiproliferative activities against three human cancer lines HT-29, MCF-7 and Hep-3B. Among them, 1e exhibited greater than 10 times selectivity between GLUT1 highly expressed cells (HT-29 and MCF-7) and GLUT1 lowly expressed cells (Hep-3B), and also showed lower cytotoxicity against HUVECs compared with colchicine.

View Article and Find Full Text PDF

Aerobic glycolysis is a hallmark of malignant tumor. Here, the hyperactive glycolysis in multidrug-resistant A549/Taxol cells was demonstrated to be essential for maintaining the vigorous cell viability and drug resistance. 5-(4-ethoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazol-3-amine (YAN), a newly synthesized tubulin inhibitor, could not only inhibit the glycolysis in A549 and A549/Taxol cells through down-regulating the glycolysis-related proteins, but also disrupt the mitochondrial localization of hexokinase-2 (HK-2) which is related with the apoptosis resistance.

View Article and Find Full Text PDF

The occurrence of multidrug resistance (MDR) is one of the impediments in the clinical treatment of breast cancer, and MDR breast cancer has abnormally high breast cancer resistance protein (BCRP/ABCG2) expression. However, there are currently no clinical drugs that inhibit this target. Our previous study found that 2-Methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ0814061/SQ), a small molecule drug with low toxicity to normal tissues, could target microtubules, inhibit the proliferation of breast cancer, and reduce its migration and invasion abilities.

View Article and Find Full Text PDF

Chemical drug design based on the biochemical characteristics of cancer cells has become an important strategy for discovering new anti-tumour drugs to improve tumour targeting effects and reduce off-target toxicities. Colchicine is one of the most prominent and historically microtubule-targeting drugs, but its clinical applications are hindered by notorious adverse effects. In this study, we presented a novel tumour-specific conjugate that consists of deacetylcolchicine (Deac), biotin, and a cleavable disulphide linker.

View Article and Find Full Text PDF

Mitotic catastrophe (MC) is a newly identified type of anticancer mechanism for multidrug resistance (MDR) prevention. However, the long cellular death process resulting from MC is not beneficial for anticancer treatment. BZML is a novel colchicine-binding site inhibitor which can overcome MDR by inducing MC; however, BZML-induced MC cells underwent a long cellular death process.

View Article and Find Full Text PDF

A series of new 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d]imidazoles as tubulin polymerization inhibitors targeting the colchicine-binding site were designed to restrict bioactive configuration of (Z,E)-vinylogous CA-4. All of the target compounds were synthesized and then evaluated for their in vitro antiproliferative activities. Among them, 2a exhibited the most potent activities against three cancer cell lines with IC values in the range of 0.

View Article and Find Full Text PDF

Two series of 2,7-diaryl-pyrazolo[1,5-a]pyrimidines as tubulin polymerization inhibitors were designed to restrict bioactive configuration of (E,Z)-vinylogous CA-4. All of the target compounds were synthesized and then evaluated for their in vitro antiproliferative activities against three cancer cell lines (MCF-7, SGC-7901 and A549). Among them, 6d exhibited the most potent antiproliferative activity against the MCF-7 with IC value of 0.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is considered one of the most common primary liver cancers and the second leading cause of cancer-associated mortality around the world annually. Therefore, it is urgent to develop novel drugs for HCC therapy. We synthesized a novel 4-substituted-methoxybenzoyl-aryl-thiazole (SMART) analog, (5-(4-aminopiperidin-1-yl)-2-phenyl-2H-1,2,3-triazol-4-yl) (3,4,5-trimethoxyphenyl) methanone (W436), with higher solubility, stability, and antitumor activity than SMART against HCC cells in vivo.

View Article and Find Full Text PDF

A series of 1-aryl-5-(4-arylpiperazine-1-carbonyl)-1-tetrazols as microtubule destabilizers were designed, synthesised and evaluated for anticancer activity. Based on bioisosterism, we introduced the tetrazole moiety containing the hydrogen-bond acceptors as B-ring of XRP44X analogues. The key intermediates ethyl 1-aryl-1-tetrazole-5-carboxylates can be simply and efficiently prepared a microwave-assisted continuous operation process.

View Article and Find Full Text PDF

Hereby, we report our efforts on discovery and optimization of a new series of 5-aryl-4-(4-arylpiperazine-1-carbonyl)-1,2,3-thiadiazoles as new microtubule-destabilizing agents along our previous study. Guided by docking model analysis, we introduced the 1,2,3-thiadiazole moiety containing the hydrogen-bond acceptors as B-ring of XRP44X analogues. Extensive structure modifications were performed to investigate the detailed structure and activity relationships (SARs).

View Article and Find Full Text PDF

A series of novel 5-methyl-4-aryl-3-(4-arylpiperazine-1-carbonyl)-4H-1,2,4-triazoles possessing 1,2,4-triazole as the hydrogen-bond acceptor were designed, synthesized and evaluated for their antiproliferative and tubulin polymerization inhibitory activities. Some of them exhibited moderate activities in vitro against the three cancer cell lines including SGC-7901, A549 and HeLa. Compound 6e exhibited the highest potency against the three cancer cell lines.

View Article and Find Full Text PDF

Lung cancer is the most common cause of cancer-related death worldwide. The occurrence of multidrug resistance (MDR) affects the therapeutic efficacy of chemotherapeutics. Therefore, to develop new anticarcinogen which can overcome MDR is urgent.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is highly metastatic and lacks effective therapeutic targets among several subtypes of breast cancer. Cancer metastasis promotes the malignancy of TNBC and is closely related to the poor prognosis of the TNBC patients. We aim to explore novel agents that effectively inhibit cancer metastasis to treat TNBC.

View Article and Find Full Text PDF

Non-small-cell lung cancer (NSCLC) is one of the common malignant tumors, and multidrug resistance (MDR) and tumor metastasis limit the anticancer effect of NSCLC. Therefore, it is necessary to develop new anticancer drug that can inhibit MDR and metastasis of NSCLC. In the present study, we found that 5-(2-chlorophenyl)-4-(4-(3,5-dimethoxyphenyl)piperazine-1-carbonyl)-2H-1,2,3- triazole (MAY) displayed strong cytotoxic effect on A549 and taxol-resistant A549 cells (A549/Taxol cells).

View Article and Find Full Text PDF

Green chemistry is becoming the favored approach to preparing drug molecules in pharmaceutical industry. Herein, we developed a clean and efficient method to synthesize 3-benzoylquinoxalines via activated carbon promoted aerobic benzylic oxidation under "on-water" condition. Moreover, biological studies with this class of compounds reveal an antiproliferative profile.

View Article and Find Full Text PDF

A series of 2-aryl-4-(3,4,5-trimethoxybenzoyl)-5-substituted-1,2,3-triazoles were designed, synthesized and evaluated for the anticancer activities. Based on the model of DMAM-colchicine-tubulin complex interactions, various saturated nitrogen-containing heterocycles were introduced to the C5-position of 1,2,3-triazol to interact with a tolerant region at the entrance of the binding-pocket and increase the aqueous solubility of the compounds. All designed compounds were concisely synthesized by one-pot oxidative cyclization.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common malignancies, and multidrug resistance (MDR) reduces the efficiency of anticancer drugs. Therefore, the development of novel anticancer drugs that are highly active against CRC with MDR is urgently needed. Our previous study showed that 5-(3,4,5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl) imidazol (BZML) is not a P-glycoprotein (P-gp) substrate and has a potent anticancer effect against paclitaxel -sensitive or -resistant non-small-cell lung cancer (NSCLC) in vitro and in vivo.

View Article and Find Full Text PDF