Publications by authors named "Weigang Zhong"

Article Synopsis
  • The pH-shifting method is highlighted as an eco-friendly alternative to the traditional desolvation method for creating nanoparticles, specifically BSA-GA NPs designed to reduce inflammation in macrophages.
  • *The study found that the pH-shifting method allowed for better loading capacity of galangin (GA) onto bovine serum albumin (BSA) due to changes in binding site exposure and particle structure.
  • *Results indicated that the pH-shifting method produced smaller nanoparticles with a higher specific surface area, which improved their ability to be absorbed by macrophages and enhanced their anti-inflammatory properties.
View Article and Find Full Text PDF

The usage of food-derived polyphenols with different polarities has been limited by their instability and incompatibility. Therefore, a biocarrier was developed by co-assembly of whey protein isolate (WPI) and hydrophilic proanthocyanidin (PC) for loading hydrophobic pterostilbene (PTE). Such biocarrier has superior affinity for PTE than WPI alone, as determined by encapsulation efficiency and loading capacity assay, fluorescence quenching analysis, and molecular docking, whereas the assembly process was characterized by particle size and zeta potential, 3-dimensional fluorescence, and scanning electron microscopy.

View Article and Find Full Text PDF

Rational selection of the complex state and polysaccharide type may enhance the performance of electrostatic complex stabilized high internal phase emulsions (HIPEs). Herein, quinoa proteins were extracted to form electrostatic complexes separately with three gelling-type polysaccharides to fabricate HIPEs. Results showed that the complexes in soluble state (pH 8.

View Article and Find Full Text PDF

Incorporating LA into whey protein by forming whey protein isolate-LA (WPI-LA) and polymerized whey protein-LA (PWP-LA) complexes is a good way to maintain its bioactivity and improve its functional performance within food matrices. Herein, we found that WPI and PWP were able to interact with LA as suggested by multi-spectroscopy, molecular docking, and molecular dynamics simulations. The interaction between whey protein and LA was a spontaneous non-covalent binding process, while PWP had a higher affinity for LA than WPI, resulting from its more negatively binding free energy with LA.

View Article and Find Full Text PDF

Interactions between whey protein isolate (WPI) and hyaluronic acid (HA) were characterized as functions of pH (6.0-1.0) and protein to polysaccharide ratio (R, 1:4-10:1).

View Article and Find Full Text PDF

Glutathione (GSH) is a powerful antioxidant, but its application is limited due to poor storage stability and low bioavailability. A novel nutrient encapsulation and delivery system, consisting of polymerized whey protein concentrate and GSH, was prepared and in vivo bioavailability, antioxidant capacity and toxicity were evaluated. Polymerized whey protein concentrate encapsulated GSH (PWPC-GSH) showed a diameter of roughly 1115 ± 7.

View Article and Find Full Text PDF