Background: Nebulization of hypoxic human umbilical cord mesenchymal stem cell-derived extracellular vesicles (Hypo-EVs) can suppress airway inflammation and remodeling in a chronic asthmatic mouse; however, the exact mechanism remains unclear. Recently, airway epithelial barrier defects have been regarded as crucial therapeutic targets in asthma. The aim of this study was to investigate whether and how Hypo-EVs protect against the disruption of the airway epithelial barrier under asthmatic conditions.
View Article and Find Full Text PDF() is an opportunistic pathogen frequently isolated from cutaneous chronic wounds. How , in the presence of oxidative stress (OS), colonizes chronic wounds and forms a biofilm is still unknown. The purpose of this study is to investigate the changes in gene expression seen when PA is challenged with the high levels of OS present in chronic wounds.
View Article and Find Full Text PDFMicrosatellite repeat expansions within genes contribute to a number of neurological diseases. The accumulation of toxic proteins and RNA molecules with repetitive sequences, and/or sequestration of RNA-binding proteins by RNA molecules containing expanded repeats are thought to be important contributors to disease aetiology. Here we reveal that the adenosine in CAG repeat RNA can be methylated to N-methyladenosine (mA) by TRMT61A, and that mA can be demethylated by ALKBH3.
View Article and Find Full Text PDFMesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) are extremely promising nanoscale cell-free therapeutic agents. We previously identified that intravenous administration (IV) of human umbilical cord MSC-EVs (hUCMSC-EVs), especially hypoxic hUCMSC-EVs (Hypo-EVs), could suppress allergic airway inflammation and remodeling. Here, we further investigated the therapeutic effects of Hypo-EVs administration by atomizing inhalation (INH), which is a non-invasive and efficient drug delivery method for lung diseases.
View Article and Find Full Text PDFSkeletal muscle is a highly adaptable tissue and remodels in response to exercise training. Using short RNA sequencing, we determine the miRNA profile of skeletal muscle from healthy male volunteers before and after a 14-day aerobic exercise training regime. Among the exercise training-responsive miRNAs identified, miR-19b-3p was selected for further validation.
View Article and Find Full Text PDFA Correction to this paper has been published: https://doi.org/10.1038/s41556-021-00687-w.
View Article and Find Full Text PDFEukaryotic cells regulate 5'-triphosphorylated RNAs (ppp-RNAs) to promote cellular functions and prevent recognition by antiviral RNA sensors. For example, RNA capping enzymes possess triphosphatase domains that remove the γ phosphates of ppp-RNAs during RNA capping. Members of the closely related PIR-1 (phosphatase that interacts with RNA and ribonucleoprotein particle 1) family of RNA polyphosphatases remove both the β and γ phosphates from ppp-RNAs.
View Article and Find Full Text PDFNon-coding small RNAs play important roles in virus-host interactions. For hosts, small RNAs can serve as sensors in antiviral pathways including RNAi and CRISPR; for viruses, small RNAs can be involved in viral transcription and replication. This paper covers several recent discoveries on small RNA mediated virus-host interactions, and focuses on influenza virus cap-snatching and a few important virus sensors including PIR-1, RIG-I like protein DRH-1 and piRNAs.
View Article and Find Full Text PDFInfluenza A virus (IAV) utilizes cap-snatching to obtain host capped small RNAs for priming viral mRNA synthesis, generating capped hybrid mRNAs for translation. Previous studies have been focusing on canonical cap-snatching, which occurs at the very 5' end of viral mRNAs. Here we discovered noncanonical cap-snatching, which generates capped hybrid mRNAs/noncoding RNAs mapped to the region ∼300 nucleotides (nt) upstream of each mRNA 3' end, and to the 5' region, primarily starting at the second nt, of each virion RNAs (vRNA).
View Article and Find Full Text PDF5-Methylcytosine is found in both DNA and RNA; although its functions in DNA are well established, the exact role of 5-methylcytidine (mC) in RNA remains poorly defined. Here we identified, by employing a quantitative proteomics method, multiple candidate recognition proteins of mC in RNA, including several YTH domain-containing family (YTHDF) proteins. We showed that YTHDF2 could bind directly to mC in RNA, albeit at a lower affinity than that toward -methyladenosine (mA) in RNA, and this binding involves Trp, a conserved residue located in the hydrophobic pocket of YTHDF2 that is also required for mA recognition.
View Article and Find Full Text PDFHigh-throughput sequencing has become a standard tool for analyzing RNA and DNA. This method usually needs a cDNA/DNA library ligated with specific 5' and 3' linkers. Unlike mRNA, small RNA often contains modifications including 5' cap or triphosphate and 2'--methyl, requiring additional processing steps before linker additions during cloning processes; due to low expression levels, it is difficult to clone small RNA with a small amount of total RNA.
View Article and Find Full Text PDFRNA silencing (RNAi) has a well-established role in anti-viral immunity in plants. The destructive eukaryotic pathogen Phytophthora encodes suppressors of RNAi (PSRs), which enhance plant susceptibility. However, the role of small RNAs in defense against eukaryotic pathogens is unclear.
View Article and Find Full Text PDFThe recent discovery of the positive-sense single-stranded RNA (ssRNA) Orsay virus (OV) as a natural pathogen of the nematode Caenorhabditis elegans has stimulated interest in exploring virus-nematode interactions. However, OV infection is restricted to a small number of intestinal cells, even in nematodes defective in their antiviral RNA interference (RNAi) response, and is neither lethal nor vertically transmitted. Using a fluorescent reporter strain of the negative-sense ssRNA vesicular stomatitis virus (VSV), we show that microinjection of VSV particles leads to a dose-dependent, muscle tissue-tropic, lethal infection in C.
View Article and Find Full Text PDFGld2, a noncanonical cytoplasmic poly(A) polymerase, interacts with the RNA binding protein CPEB1 to mediate polyadenylation-induced translation in dendrites of cultured hippocampal neurons. Depletion of Gld2 from the hippocampus leads to a deficit in long-term potentiation evoked by theta burst stimulation. At least in mouse liver and human primary fibroblasts, Gld2 also 3' monoadenylates and thereby stabilizes specific miRNAs, which enhance mRNA translational silencing and eventual destruction.
View Article and Find Full Text PDFInfluenza A virus (IAV) lacks the enzyme for adding 5' caps to its RNAs and snatches the 5' ends of host capped RNAs to prime transcription. Neither the preference of the host RNA sequences snatched nor the effect of cap-snatching on host processes is completely defined. Previous studies of influenza cap-snatching used poly(A)-selected RNAs from infected cells or relied on annotated host genes to define the snatched host RNAs, and thus lack details on many noncoding host RNAs including snRNAs, snoRNAs, and promoter-associated capped small (cs)RNAs, which are made by "paused" Pol II during transcription initiation.
View Article and Find Full Text PDFApproximately 75% of the human genome is transcribed, the majority of which does not encode protein. However, many noncoding RNAs (ncRNAs) are rapidly degraded after transcription, and relatively few have established functions, questioning the significance of this observation. Here we show that esBAF, a SWI/SNF family nucleosome remodeling factor, suppresses transcription of ncRNAs from ∼57,000 nucleosome-depleted regions (NDRs) throughout the genome of mouse embryonic stem cells (ESCs).
View Article and Find Full Text PDFHuman filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing.
View Article and Find Full Text PDFArgonaute (AGO) proteins are key nuclease effectors of RNAi. Although purified AGOs can mediate a single round of target RNA cleavage in vitro, accessory factors are required for small interfering RNA (siRNA) loading and to achieve multiple-target turnover. To identify AGO cofactors, we immunoprecipitated the C.
View Article and Find Full Text PDFOrganisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe).
View Article and Find Full Text PDFDuring each life cycle, germ cells preserve and pass on both genetic and epigenetic information. In C. elegans, the ALG-3/4 Argonaute proteins are expressed during male gametogenesis and promote male fertility.
View Article and Find Full Text PDF