Publications by authors named "Weicong Liu"

Background: Whole genome sequencing (WGS) is becoming increasingly prevalent for molecular diagnosis, staging and prognosis because of its declining costs and the ability to detect nearly all genes associated with a patient's disease. The currently widely accepted variant calling pipeline, GATK, is limited in terms of its computational speed and efficiency, which cannot meet the growing analysis needs.

Results: Here, we propose a fast and accurate DNASeq variant calling workflow that is purely composed of tools from LUSH toolkit.

View Article and Find Full Text PDF

Background: To evaluate the clinical and radiographic results of cervical total disc replacement (CTDR) and anterior cervical discectomy and fusion (ACDF) in the treatment of single-level cervical disc degenerative disease with a mid-term follow-up period.

Methods: Seventy-two patients with C5/6 single-level cervical degenerative disc disease refractory to conservative interventions were randomly assigned to two groups: ACDF and CTDR. Clinical outcomes were assessed by using the Japanese Orthopedic Association (JOA) score and the Neck Disability Index (NDI).

View Article and Find Full Text PDF

Background: Three-dimensional reduction plays a vital role in surgical reduction of irreversible atlantoaxial dislocation (IAAD). However, the most commonly used combination of C1 pedicle screw (PS) or lateral mass screw (LMS) and C2 PS or isthmus screw often fails to achieve satisfactory reduction at one time. The difficulty is usually caused by short anteroposterior and vertical distance between heads of C1 and C2 screws, which lack enough space for reduction operation.

View Article and Find Full Text PDF

Correction for 'Recent advances in cell membrane coated metal-organic frameworks (MOFs) for tumor therapy' by Weicong Liu et al., J. Mater.

View Article and Find Full Text PDF

Background: To date, number of new and attractive materials have been applied in drug delivery systems (DDDs) to improve the efficiency of the treatment of cancers. Some problems like low stability, toxicity and weak ability of targeting have hampered most of materials for further applications in biomedicine. MIL(MIL = Materials of Institute Lavoisier), as a specific subclass of metal-organic frameworks (MOFs) owns more advantages than other subclass MOFs, such as better biodegradability and lower cytotoxicity.

View Article and Find Full Text PDF

In improving the tumor-targeting ability of metal-organic frameworks (MOFs) for tumor therapy and avoiding the clearance as well as capture by the immune system, there are still several challenges, which limit the development and bio-applications of MOFs. To overcome these challenges, various targeted modification strategies have been proposed. Amongst all the strategies, a promising cell membrane coating method has been explored and utilized for the syntheses of new cell membrane biomimetic MOFs (CMMs).

View Article and Find Full Text PDF

The high storage capacities and excellent biocompatibilities of zinc(ii) metal-organic frameworks (Zn-MOFs) have made them outstanding candidates as drug delivery carriers. Recent studies on the pH-responsive processes based on carrier-drug interactions have proven them to be the most efficient and effective way to control the release profiles of drugs. To satisfy the ever-growing demand in cancer therapy, great efforts are being devoted to the development of methods to precisely control drug release and achieve targeted use of an active substance at the right time and place.

View Article and Find Full Text PDF

The effect of eight cold-resistant yeast strains (J3, J7, J8, J9, J12, J15, J18, and J25) of Wickerhamomyces anomalus on the lipid oxidation of cold stored fish mince (4 °C) were investigated. And the metabolites of these yeast were determined with gas chromatography-mass spectrometry. These strains could effectively inhibit the increase of hydroperoxides value (p < 0.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) show promising application in biomedicine and pharmaceutics owing to their extraordinarily high surface area, tunable pore size, and adjustable internal surface properties. However, MOFs are prepared from non-renewable or toxic materials, which limit their real-world applications. Cyclodextrins (CDs) are a typical natural and biodegradable cyclic oligosaccharide and are primarily used to enhance the aqueous solubility, safety, and bioavailability of drugs by virtue of its low toxicity and highly flexible structure, offering a peculiar ability to form CD/drug inclusions.

View Article and Find Full Text PDF

The adsorption capacity of three representative pharmaceutical drugs and personal care products (PPCPs) viz. diclofenac sodium (DCF), chlorpromazine hydrochloride (CLF) and amodiaquin dihydrochloride (ADQ), were preliminarily studied using a water-stable Cu(II)-based metal organic framework (MOF) [Cu(BTTA)]·2DMF (1) (HBTTA = 1,4-bis(triazol-1-yl)terephthalic acid). We also investigated the factors influencing the adsorption such as concentration, pH, contact time, temperature and dosages.

View Article and Find Full Text PDF

We herein selected a 3D metal⁻organic framework decorated with carboxylate groups as an adsorbent to remove the pharmaceutical molecules of diclofenac sodium and chlorpromazine hydrochloride from water. The experiment aimed at exploring the effect factors of initial concentration, equilibrium time, temperature, pH and adsorbent dosage on the adsorption process. The adsorption uptake rate of the diclofenac sodium is much higher than that of the chlorpromazine hydrochloride.

View Article and Find Full Text PDF

Background: Metal-organic frameworks (MOFs), as a new class of porous organic-inorganic crystalline hybrid materials that governed by the self-assembled of metal atoms and organic struts have attracted tremendous attention because of their special properties. Recently, some more documents have reported different types of nanoscale metal-organic frameworks (NMOFs) as biodegradable and physiological pH-responsive systems for photothermal therapy and radiation therapy in the body.

Discussion: In this review paper aims at describing the benefits of using MOF nanoparticles in the field of biomedicine, and putting into perspective their properties in the context of the ones of other NPs.

View Article and Find Full Text PDF

Background: The objectives of this study are to investigate the clinical curative effect of Gallie technique and atlantoaxial screw-rod constructs (SRC) on atlantoaxial sagittal instability and determine the indication of Gallie technique.

Methods: Data of 49 patients with atlantoaxial sagittal instability from February 2008 to May 2015 were analyzed retrospectively. The visual analog scale (VAS) score and the neck disability index (NDI) were used to evaluate the curative effect.

View Article and Find Full Text PDF

Luminescent metal-organic frameworks (LMOFs) containing fluorescent probes for the detection of pollutants such as organic solvents and heavy metals are becoming increasingly important, with lanthanide-MOF (Ln-MOF) materials receiving greater attention owing to the possibility of achieving fine-tuned luminescent properties. Herein, two unusual isostructural nanocage-based three-dimensional Ln-MOFs, 1-Ln (Ln=Tb, Eu), are constructed, using a new diisophthalate ligand with active Lewis basic triazole sites. Selective gas adsorption, especially the removal of CO from CH , a primary component of natural gas and biogas, is desirable in terms of both economic and environmental considerations.

View Article and Find Full Text PDF