Publications by authors named "Weichao Shi"

Although past experimental and theoretical research has made substantial progress in understanding evaporation behaviors in various suspensions, the fundamental mechanism for polymer sessile droplets is still lacking. One critical effect is the molecular weight on the evaporation behaviors. Here, systematic experiments are carried out to investigate the evaporation behavior of polymer droplets under the effects of polymer concentration, evaporation rate, and especially molecular weight.

View Article and Find Full Text PDF

Liquid-liquid phase separation at complex interfaces is a common phenomenon in biological systems and is also a fundamental basis to create synthetic materials in multicomponent mixtures. Understanding the liquid-liquid phase separation in well-defined macromolecular systems is anticipated to shed light on similar behaviors in cross-disciplinary areas. Here we study a series of immiscible polymers and reveal a generic phase diagram of liquid-liquid phase separation at double emulsion interfaces, which depicts the equilibrium structures by interfacial tension and polymer fraction.

View Article and Find Full Text PDF

Aggregation-structure formation of conjugated polymers is a fundamental problem in the field of organic electronics and remains poorly understood. Herein, the molar mass dependence of the aggregation structure of a high-mobility conjugated copolymer (TDPP-Se) comprising thiophene-flanked diketopyrrolopyrrole and selenophene is thoroughly shown. Five batches of TDPP-Se are prepared with the number-average molecular weights (M ) varied greatly from 21 to 135 kg mol .

View Article and Find Full Text PDF

We investigate the rheological properties of interpenetrating networks reconstituted from the main cytoskeletal components: filamentous actin, microtubules, and vimentin intermediate filaments. The elastic modulus is determined largely by actin, with little contribution from either microtubules or vimentin. However, vimentin dramatically impacts the relaxation, with even small amounts significantly increasing the relaxation time of the interpenetrating network.

View Article and Find Full Text PDF

Underwater radiated noise (URN) has a negative impact on the marine acoustic environment where it can disrupt marine creature's basic living functions such as navigation and communication. To control the ambient ocean noise levels due to human activities, international governing bodies such as the International Maritime Organization (IMO) have issued non-mandatory guidelines to address this issue. Under such framework, the hydroacoustic performance of marine vehicles has become a critical factor to be evaluated and controlled throughout the vehicles' service life in order to mitigate the URN level and the role humankind plays in the ocean.

View Article and Find Full Text PDF

Symbiotic relationships have developed through natural evolution. For example, that of the remora fish attached to the body of a shark. From the remora's perspective, this could be associated to an increased hydrodynamic efficiency in swimming and this needs to be investigated.

View Article and Find Full Text PDF

It is important to characterize surface topography in order to study machined surface characteristics. Due to the features of periodicity and randomness of machined surface topography, the existing topographical parameters may not describe its features accurately. A novel characterization method called the normal declination angle of microfacet-based surface topography is thus proposed for this task.

View Article and Find Full Text PDF

Lamellar structure is a prominent state in soft condensed matter. Swelling lamellar layers to highly asymmetric structures by a second component is a facile, cost-effective strategy to impart materials with adaptive size and tunable properties. One key question that remains unsolved is how defects form and affect the asymmetric lamellar order.

View Article and Find Full Text PDF

Aimed at improving the low measurement accuracy of the binocular vision sensor along the optical axis in the process of target tracking, we proposed a method for auxiliary correction using a laser-ranging sensor in this paper. In the process of system measurement, limited to the mechanical performance of the two-dimensional turntable, the measurement value of a laser-ranging sensor is lagged. In this paper, the lag information is updated directly to solve the time delay.

View Article and Find Full Text PDF

It remains a grand challenge to prepare anisotropic crystal superstructures with sensitive optical properties in polymer science and materials field. This study demonstrates that semicrystalline polymers develop into anisotropic hollow spherulitic crystals spontaneously at interfaces of liquid drops. In contrast to conventional spherulites with centrosymmetric optics and grain boundaries, these anisotropic spherulitic crystals have vanished boundary defects, tunable aspect ratios, and noncentrosymmetric, orientation-sensitive birefringence.

View Article and Find Full Text PDF

We demonstrate that the shape actuation of water-in-oil-in-water double emulsion droplets can be achieved by controlling solvent evaporation in a model system, where the oil phase consists of hydrophobic homopolymer/amphiphilic block copolymer/solvent. A gradient of interfacial tension is created in the polymer shell, which drives significant deformation of the droplets in constant volume. The deformed droplets recover to their initial shape spontaneously, and shape actuation of droplets can be further tuned by osmotic pressure.

View Article and Find Full Text PDF

We report a stepwise assembly strategy for the integration of metal-organic cages (MOCs) into block copolymers (BCPs). This approach creates "block co-polyMOC" (BCPMOC) materials whose microscopic structures and mechanical properties are readily tunable by adjusting the size and geometry of the MOCs and the composition of the BCPs. In the first assembly step, BCPs functionalized with a pyridyl ligand on the chain end form star-shaped polymers triggered by metal-coordination-induced MOC assembly.

View Article and Find Full Text PDF

Metabolically engineered Escherichia coli strains were constructed to effectively produce novel glycolate-containing biopolymers from glucose. First, the glyoxylate bypass pathway and glyoxylate reductase were engineered such as to generate glycolate. Second, glycolate and lactate were activated by the Megasphaera elsdenii propionyl-CoA transferase to synthesize glycolyl-CoA and lactyl-CoA, respectively.

View Article and Find Full Text PDF

Nanolayered lamellae are common structures in nanoscience and nanotechnology, but most are nearly symmetric in layer thickness. Here, we report on the structure and mechanics of highly asymmetric and thermodynamically stable soft-hard lamellar structures self-assembled from optimally designed PS1-(PI-b-PS2)3 miktoarm star block copolymers. The remarkable mechanical properties of these strong and ductile PS (polystyrene)-based nanomaterials can be tuned over a broad range by varying the hard layer thickness while maintaining the soft layer thickness constant at 13 nm.

View Article and Find Full Text PDF

We demonstrate that small domain features (∼13 nm) can be obtained in a series of polystyrene (PS) and poly(lactic acid) (PLA) block copolymers, PS-(PLA) and (PS)-(PLA), that combine miktoarm molecular architectures with large interaction parameters. To supplement the experimental work, we used self-consistent field theory in tandem with the random phase approximation to explore and contrast the phase behavior of AB and AB types of miktoarm block copolymers. Specifically, AB and AB were found to be effective molecular architectures for inducing strong shifts in phase boundaries with copolymer composition and to simultaneously tune domain feature sizes.

View Article and Find Full Text PDF

We report the creation of highly asymmetric lamellar structures with a well-designed miktoarm star block copolymer of the S(IS')3 type, where S and S' are polystyrenes of different lengths and I is poly(isoprene). The domain spacing can be tuned continuously from 37 nm to over 300 nm when the miktoarm star block copolymer is blended with suitable molecular weight polystyrene homopolymers. Beyond the unbinding transition of the lamellar phase, extremely asymmetric lamellar structures were obtained with up to 97 wt % polystyrene, remarkably leaving the poly(isoprene) layers intact at only 3 wt %!

View Article and Find Full Text PDF

We report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic ( or ) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock.

View Article and Find Full Text PDF

Coarsening is a general phenomenon in phase separating mixtures. In this study, we report a hierarchical coarsening at different length scales. Dispersed domains grew by direct combination of two/three small ones while some small domains can survive for a long time.

View Article and Find Full Text PDF

Polymer blends with dynamic asymmetry have attracted much interest recently. In this study, we report a more typical case where the dynamically asymmetric system is highly immiscible. We find that there is a transient network growth and phase inversion for the slow minor component.

View Article and Find Full Text PDF

Spherulitic patterns usually form in the single process of crystallization in polymer blends. But when phase separation intervenes under deep quench, the radial growth of the initial spherulitic patterns tends to invert into concentric alternating crystalline-/amorphous-rich ring structures. Within crystalline-rich regions, lateral lamellae orient in the tangential direction rather than in the usual radial direction.

View Article and Find Full Text PDF