Publications by authors named "Weibing Qiang"

In this paper, a colorimetric silver nanoparticles aptasensor (aptamer-AgNPs) was developed for simple and straightforward detection of protein in microfluidic chip. Surface-functionalized microfluidic channels were employed as the capture platform. Then the mixture of target protein and aptamer-AgNPs were injected into the microfluidic channels for colorimetric detection.

View Article and Find Full Text PDF

A nanocomplex was developed for molecular sensing in living cells, based on the fluorophore-labeled aptamer and the polydopamine nanospheres (PDANS). Due to the interaction between ssDNA and PDANS, the aptamer was adsorbed onto the surface of PDANS forming the aptamer/PDANS nanocomplex, and the fluorescence was quenched by PDANS through Förster resonance energy transfer (FRET). In vitro assay, the introduction of adenosine triphosphate (ATP) led to the dissociation of the aptamer from the PDANS and the recovery of the fluorescence.

View Article and Find Full Text PDF

Rapid, cost-effective, sensitive and specific analysis of biomolecules is important in the modern healthcare system. Here, a fluorescent biosensing platform based on the polydopamine nanospheres (PDANS) intergrating with Exonuclease III (Exo III) was developed. Due to the interaction between the ssDNA and the PDANS, the fluorescence of 6-carboxyfluorescein (FAM) labelled in the probe would been quenched by PDANS through FRET.

View Article and Find Full Text PDF

We fabricated a multifunctional theragnostic agent Ag-Sgc8-FAM for apoptosis-based cancer therapy and fluorescence-enhanced cell imaging. For cancer therapy, aptamers Sgc8 and TDO5 acted as recognizing molecules to bind CCRF-CEM and Ramos cells specifically. It was found that aptamer-silver conjugates (Ag-Sgc8, Ag-TDO5) could be internalized into cells by receptor-mediated endocytosis, inducing specific apoptosis of CCRF-CEM and Ramos cells.

View Article and Find Full Text PDF

Aptamer-silver decahedral nanoparticles (Ag10NPs-aptamer) based detection was developed for protein. Ag10NPs were synthesized by photochemical method. The advantage of Ag10NPs was its tolerance of NaCl which facilitates the functionalization of silver nanoparticles with all kinds of ssDNA.

View Article and Find Full Text PDF

A sensitive and convenient strategy was developed for label-free assay of adenosine. The strategy adapted the fluorescence resonance energy transfer property between Rhodamine B doped fluorescent silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs) to generate signal. The different affinities of AuNPs toward the unfolded and folded aptamers were employed for the signal transfer in the system.

View Article and Find Full Text PDF

This paper presents an ultrasensitive fluorescent detection method through fabricating a silver microarray substrate. Silver nanoparticles (AgNPs) and Ag@Au core-shell nanoparticles with different sizes were first synthesized by a seed-mediated growth method and the metal-enhanced fluorescence of these nanoparticles on different fluorescent dyes was investigated. The results indicated that AgNPs could act as a versatile and effective metal-enhanced fluorescence material for various fluorophores, whereas the enhanced fluorescence from Ag@Au was limited only to certain fluorophores.

View Article and Find Full Text PDF

In this work, we reported a scanometric assay system based on the aptamer-functionalized silver nanoparticles (apt-AgNPs) for detection of platelet-derived growth factor-BB (PDGF-BB) protein. The aptamer and ssDNA were bound with silver nanoparticles by self-assembly of sulfhydryl group at 5' end to form the apt-AgNPs probe. The apt-AgNPs probe can catalyze the reduction of metallic ions in color agent to generate metal deposition that can be captured both by human eyes and a flatbed scanner.

View Article and Find Full Text PDF

Nanomaterials as tracing tags have been widely used in biosensors with high sensitivity and selectivity. In this work, a signal amplification electrochemical aptamer sensing strategy for the detection of protein was designed by combining the hybridization-inducing aggregate of DNA-functionalized silver nanoparticles (AgNPs) and differential pulse stripping voltammetry (DPSV) detection. The multiprobes containing hybridization DNA and aptamers were anchored onto the silver nanoparticles.

View Article and Find Full Text PDF

In this paper, we developed a simple and rapid colorimetric assay for protein detection based on the reduction of dye molecules catalyzed by silver nanoparticles (AgNPs). Aptamer-modified magnetic particles and aptamer-functionalized AgNPs were employed as capture and detection probes, respectively. Introduction of thrombin as target protein could form a sandwich-type complex involving catalytically active AgNPs, whose catalytic activity was monitored on the catalytic reduction of rhodamine B (RhB) by sodium borohydride (NaBH4).

View Article and Find Full Text PDF

An ultrasensitive, fast and specific fluorescent platform for protein detection is developed. In this protocol, silver nanoparticles were conjugated with paramagnetic particles (MPs-Ag) for target capture, concentration and separation; fluorescent dyes functionalized silver nanoparticles (Tag) for generating signals. The presented method is highly sensitive and specific with a detection limit of 2.

View Article and Find Full Text PDF

Nanoparticle-catalyzed reductive bleaching reactions of colored substrates are emerging as a class of novel indicator reactions for fabricating enzyme-free amplified colorimetric biosensing (turn-off mode), which are exactly opposite to the commonly used oxidative coloring processes of colorless substrates in traditional enzyme-catalyzed amplified colorimetric bioassays (turn-on mode). In this work, a simple theoretical analysis shows that the sensitivity of this colorimetric bioassay can be improved by increasing the amplification factor (kcatΔt), or enhancing the binding affinity between analyte and receptor (Kd), or selecting the colored substrates with high extinction coefficients (ε). Based on this novel strategy, we have developed a turn-off and cost-effective amplified colorimetric thrombin aptasensor.

View Article and Find Full Text PDF

A silver nanoparticle (AgNP)-enhanced fluorescence resonance energy transfer (FRET) sensing system is designed for the sensitive detection of human platelet-derived growth factor-BB (PDGF-BB). Fluorophore-functionalized aptamers and quencher-carrying strands hybridized in duplex are coupled with streptavidin (SA)-functionalized nanoparticles to form a AgNP-enhanced FRET sensor. The resulting sensor shows lower background fluorescence intensity in the duplex state due to the FRET effect between fluorophores and quenchers.

View Article and Find Full Text PDF

A novel, enzyme-free and aptamer-based colorimetric platform for protein detection has been developed, which takes advantage of aptamer-functionalized magnetic beads (MBs) for target capture, concentration and separation, and aptamer-conjugated gold nanoparticle (AuNP)-catalyzed color bleaching reaction of methyl orange (MO) to generate the colorimetric signals. It was demonstrated that the proposed colorimetric sensing strategy enables simple, cost-effective, sensitive and specific thrombin detection without the use of any enhancing solutions and enzymes. Herein, by naked eye observation, we can detect the human thrombin with a detection limit of approximately 320 pM, which can be further decreased to 30 pM with the help of a UV-vis instrument.

View Article and Find Full Text PDF

We present a highly sensitive metal enhanced fluorescence (MEF) method based on a novel silver nanostructure fabricated with Cy5-functionalized silver nanoparticles (AgNPs) and AgNO(3). The analytical performance has been demonstrated by microarray detection of streptavidin (SA) and human IgE. The fluorescence intensity can be enhanced substantially with the combined use of AgNPs and fluorescence enhanced solution (FES).

View Article and Find Full Text PDF

An ultrasensitive protein assay method was developed based on silver nanoparticle (AgNP) hybrid probes and metal-enhanced fluorescence. Two aptamer based silver nanoparticles, Aptamer/Oligomer-A/Cy3-modified AgNPs (Tag-A) and Aptamer/Oligomer-B/Cy3-modified AgNPs (Tag-B) were hybridized to form a silver nanoparticle aggregate that produced a red shift and broadening of the Localized Surface Plasmon Resonance (LSPR) peak. The enhanced fluorescence resulted from the increased content of Cy3 molecules and their emission resonance coupled to the broadened localized surface plasmon (LSP) of AgNP aggregate.

View Article and Find Full Text PDF

In this work a novel microdevice sensor has been developed by plating gold on the PDMS surface to generate a sandwich-type gap electrode for DNA detection. The microdevice utilizes a gold band electrode-PDMS-gold band electrode configuration and the minimum detectable volume could be as low as 5 μL. The 20 μm PDMS-based gap was chemically modified with DNA capture probes and DNA sandwich hybrids were formed with the addition of DNA target and silver nanoparticle probes.

View Article and Find Full Text PDF