Personal thermal management (PTM) materials have recently received considerable attention to improve human body thermal comfort with potentially reduced energy consumption. Strategies include passive radiative cooling and warming. However, challenges remain for passive thermal regulation of one material or structure in both harsh hot and cold environments.
View Article and Find Full Text PDFInterface stresses are pervasive and critical in conventional optoelectronic devices and generally lead to many failures and reliability problems. However, detection of the interface stress embedded in organic optoelectronic devices is a long-standing problem, which causes the unknown relationship between interface stress and organic device stability (one key and unsettled issue for practical applications). In this study, a kind of previously unknown molecular conformation-induced stress is revealed at the organic embedded interface through sum frequency generation (SFG) spectroscopy technique.
View Article and Find Full Text PDFStyrene-ethylene-butylene-styrene (SEBS) composite films containing well-dispersed and highly aligned hexagonal boron nitride (hBN) platelets were achieved by a ball milling process followed by hot-pressing treatment. An ultrahigh in-plane thermal conductivity of 45 W m K was achievable in the SEBS composite film with 95 wt% hBN. The corresponding out-of-plane thermal conductivity was also as high as 4.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2017
As a promising Li-metal battery, Li-S battery has an ultrahigh theoretical energy density of 2600 Wh kg. However, most of the previous work has mainly focused on tackling the "polysulfide shuttle" originating from the S cathode, while the dendrite problem coming from the Li-metal anode has often been overlooked. Herein, to solve the issues arising from both the cathode and anode simultaneously, we propose a novel cell configuration for the first time by inserting CNT films on both sides of the separator in Li-S batteries, in which the cathode-side CNT film works as a shield to suppress the "polysulfide shuttle" and the anode-side CNT film acts as a powerful shield to prevent the Li dendrite growth.
View Article and Find Full Text PDF