Autism spectrum disorder (ASD) is a group of developmental diseases characterized by social dysfunction and repetitive stereotype behaviors. Besides genetic mutations, environmental factors play important roles in the development of ASD. Valproic acid (VPA) is widely used for modeling environmental factor induced ASD in rodents.
View Article and Find Full Text PDFPregnancy exposure of valproic acid (VPA) is widely adopted as a model of environmental factor induced autism spectrum disorder (ASD). Increase of excitatory/inhibitory synaptic transmission ratio has been proposed as the mechanism of VPA induced ASD. How this happened, particularly at the level of excitatory neuron differentiation in human neural progenitor cells (NPCs) remains largely unclear.
View Article and Find Full Text PDFSocial dysfunction is the core syndrome of autism spectrum disorder (ASD) and lacks effective medicine. Although numerous risk genes and relevant environmental factors have been identified, the convergent molecular mechanism underlying ASD-associated social dysfunction remains largely elusive. Here, we report aberrant activation of canonical Wnt signaling and increased glycolysis in the anterior cingulate cortex (ACC, a key brain region of social function) of two ASD mouse models (Shank3 and valproic acid-treated mice) and their corresponding human neurons.
View Article and Find Full Text PDF