Publications by authors named "WeiYan Sun"

Dysprosium-modified tungsten oxide/carbon nanofibers (Dy-WO/PCNFs) are fabricated via electrospinning combined with high-temperature calcination to synthesize a flexible, self-supporting electrode material that does not require a conductive agent or binder. XRD and TEM analyses showed that introducing dysprosium promoted the preferential growth of WO crystals along the preponderance crystal planes involved in the electrochemical reaction, enhancing the exposure of the (002) and (200) crystal planes. Furthermore, DFT calculations demonstrated that the incorporation of Dy resulted in enhanced adsorption of Dy-WO by PCNFs, with an adsorption energy of -1.

View Article and Find Full Text PDF

Objectives: Despite excellent 5-year survival, there are limited data on the long-term prognostic characteristics of clinical stage IA part-solid lung adenocarcinoma. The objective was to elucidate the dynamics of prognostic characteristics through conditional survival analysis.

Methods: Consecutive patients who underwent complete resection for clinical stage IA part-solid lung adenocarcinoma between 2011 and 2015 were retrospectively reviewed.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most common arrhythmia, and atrial fibrosis is a pathological hallmark of structural remodeling in AF. Prostaglandin I (PGI) can prevent the process of fibrosis in various tissues via cell surface Prostaglandin I receptor (IP). However, the role of PGI in AF and atrial fibrosis remains unclear.

View Article and Find Full Text PDF

CoO nanoparticles were sandwiched into interlayers between ZIF-8 and ZIF-67 to form ZIF-CoO@ZIF precursors. Pyrolysis of ZIF-CoO@ZIF yielded an urchin-like hierarchically porous carbon (Co@CNT/NC), the thorns of which were carbon nanotubes embedded Co nanoparticles. With large specific surface area and hierarchically porous structure, as-prepared Co@CNT/NC exhibited excellent bifunctional oxygen electrocatalytic performances.

View Article and Find Full Text PDF

Atomically dispersed iron-nitrogen-carbon (FesbndNsbndC) materials have been considered ideal catalysts for the oxygen reduction. Unfortunately, designing and adjusting the electronic structure of single-atom Fe sites to boost the kinetics and activity still faces grand challenges. In this work, the coordination environment engineering is developed to synthesize the Fe/NSC catalyst with the tailored N, S co-coordinated Fe atomic site (Fe-NS site).

View Article and Find Full Text PDF

Rituximab (RTX) is a monoclonal antibody commonly used to treat PLA2R-associated membranous nephropathy (MN). This report presents a case of refractory MN in a patient who experienced severe hypokalemia, a rare but clinically significant condition, after the 5th RTX infusion. Clinicians should be aware of the potential for hypokalemia and its management during or after RTX infusion.

View Article and Find Full Text PDF

Background And Objective: With the urgent demands for rapid and precise localization of pulmonary nodules in procedures such as transthoracic puncture biopsy and thoracoscopic surgery, many surgical navigation and robotic systems are applied in the clinical practice of thoracic operation. However, current available positioning methods have certain limitations, including high radiation exposure, large errors from respiratory, complicated and time-consuming procedures, etc. METHODS: To address these issues, a preoperative computed tomography (CT) image-guided robotic system for transthoracic puncture was proposed in this study.

View Article and Find Full Text PDF

A practical strategy for engineering a trachea-like structure that could be used to repair or replace a damaged or injured trachea is an unmet need. Here, we fabricated bioengineered cartilage (BC) rings from three-dimensionally printed fibers of poly(ɛ-caprolactone) (PCL) and rabbit chondrocytes. The extracellular matrix (ECM) secreted by the chondrocytes combined with the PCL fibers formed a "concrete-rebar structure," with ECM deposited along the PCL fibers, forming a grid similar to that of native cartilage.

View Article and Find Full Text PDF

The development and design of efficient bifunctional electrocatalysts towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial for rechargeable Zinc-air batteries (ZABs). Optimizing the d-band structure of active metal center in perovskite oxides is an effective method to enhance ORR/OER activity by accelerating the rate-determining step. Herein, we report a deficient method to optimize the d-band structure of Co ions in LaMnCoO (LMCO-2) perovskite nanofibers, which regulates the mutual effect between B-site Co ions and reactive oxygen intermediates.

View Article and Find Full Text PDF

Objectives: Localization of pulmonary nodules is challenging. However, traditional localization methods have high radiation doses and a high risk of complications. We developed a noninvasive 3-dimensional printing navigational template for intraoperative localization.

View Article and Find Full Text PDF

Tracheal defects lead to devastating problems, and practical clinical substitutes that have complex functional structures and can avoid adverse influences from exogenous bioscaffolds are lacking. Herein, a modular strategy for scaffold-free tracheal engineering is developed. A cartilage sheet (Cart-S) prepared by high-density culture is laminated and reshaped to construct a cartilage tube as the main load-bearing structure in which the chondrocytes exhibit a stable phenotype and secreted considerable cartilage-specific matrix, presenting a native-like grid arrangement.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), acting as an important ingredient of intercellular communication through paracrine actions, have gained tremendous attention in the field of tissue engineering (TE). Moreover, these nanosized extracellular particles (30-140 nm) can be incorporated into biomaterials according to different principles to facilitate signal delivery in various regenerative processes directly or indirectly. Bioactive biomaterials as the carrier will extend the retention time and realize the controlled release of EVs, which further enhance their therapeutic efficiency in tissue regeneration.

View Article and Find Full Text PDF

Background: Patients in the intensive care unit (ICU) are often in critical condition and have a high mortality rate. Accurately predicting the survival probability of ICU patients is beneficial to timely care and prioritizing medical resources to improve the overall patient population survival. Models developed by deep learning (DL) algorithms show good performance on many models.

View Article and Find Full Text PDF

The family Filoviridae comprises many notorious viruses, such as Ebola virus (EBOV) and Marburg virus (MARV), that can infect humans and nonhuman primates. Lloviu virus (LLOV), a less well studied filovirus, is considered a potential pathogen for humans. The VP30 C-terminal domain (CTD) of these filoviruses exhibits nucleoprotein (NP) binding and plays an essential role in viral transcription, replication and assembly.

View Article and Find Full Text PDF

The foreign body response (FBR) caused by biomaterials can essentially be understood as the interaction between the immune microenvironment and biomaterials, which has severely impeded the application of biomaterials in tissue repair. This concrete interaction occurs via cells and bioactive substances, such as proteins and nucleic acids. These cellular and molecular interactions provide important cues for determining which element to incorporate into immunomodulatory biomaterials (IMBs), and IMBs can thus be endowed with the ability to modulate the FBR and repair damaged tissue.

View Article and Find Full Text PDF

Cell spheroids are a promising bioprinting building block that can mimic several physiological conditions in embryonic development. However, it remains challenging to efficiently prepare cell-spheroid-based bioink (Sph-bioink) with favorable printability and spheroid fusion ability. In this work, a poly(N-isopropylacrylamide) (PNIPAAm)-based porous hydrogel is developed as an "all-in-one" platform for Sph-bioink preparation.

View Article and Find Full Text PDF

Background: Percutaneous transthoracic lung biopsy is customarily conducted under computed tomography (CT) guidance, which primarily depends on the conductors' experience and inevitably contributes to long procedural duration and radiation exposure. Novel technique facilitating lung biopsy is currently demanded.

Methods: Based on the reconstructed anatomical information of CT scans, a three-dimensionally printed navigational template was customized to guide fine-needle aspiration (FNA).

View Article and Find Full Text PDF

The real-world treatment of atrial fibrillation (AF) often involves the prescription of new oral anticoagulants (NOACs) using dosing both lower and higher than recommended guidelines. Our study aimed to evaluate the efficacy and safety of non-recommended dosage of NOACs in AF patients. A systematic search was performed for relevant studies across multiple electronic databases (PubMed, Embase, Cochrane Library, Clinical Trials Registry) from inception to May 1, 2021.

View Article and Find Full Text PDF

The rapid development of tissue engineering technology has provided new methods for tracheal replacement. However, none of the previously developed biomimetic tracheas exhibit both the anatomy (separated-ring structure) and mechanical behavior (radial rigidity and longitudinal flexibility) mimicking those of native trachea, which greatly restricts their clinical application. Herein, we proposed a biomimetic scaffold with a separated-ring structure: a polycaprolactone (PCL) scaffold with a ring-hollow alternating structure was three-dimensionally printed as a framework, and collagen sponge was embedded in the hollows amid the PCL rings by pouring followed by lyophilization.

View Article and Find Full Text PDF

Aims: Interstitial lung disease (ILD) is associated with the incidence of non-small cell lung cancer (NSCLC). Patients with ILD are at risk of acute exacerbation (AE) after pulmonary resection. However, there have been no recognized treatment guidelines for NSCLC patients with ILD on computed tomography (CT).

View Article and Find Full Text PDF

Objectives: There is still some dispute regarding the performance of limited mediastinal lymphadenectomy (LML) even for lung adenocarcinoma ≤ 2 cm. We aimed to recognize the potential candidates who can benefit from LML based on the percentage of histological components (PHC).

Methods: We analyzed 1160 surgical patients with invasive lung adenocarcinoma ≤ 2 cm from seven institutions between January 2012 and December 2015.

View Article and Find Full Text PDF

The concentration of alpha-fetoprotein (AFP) rises greatly in patients with liver cancer and it is a challenge to construct a sensitive AFP detection method with wide range. Therefore, an easy and label-free sensing electrochemical platform for AFP detection with wide concentration range had been designed in this work. Firstly, MnO functionalized mesoporous carbon hollow sphere (MCHS@MnO) with optimal performance was synthesized by regulating experimental conditions and characterized by scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV), etc.

View Article and Find Full Text PDF

A novel, highly selective and sensitive chemiluminescence (CL) biosensor for insulin (INS) detection was proposed based on aptamer and oligonucleotide-gold nanoparticles functionalized nanosilica @ graphene oxide aerogel. Initially, nanosilica functionalized graphene oxide aerogel (SiO@GOAG) was successfully prepared and the composite showed rich pore distribution, large specific surface area and good biocompatibility. Insulin aptamer (IGA3) was used as a biorecognition element and oligonucleotide functionalized gold nanoparticles (ssDNA-AuNPs) was used as CL signal amplification materials, which were functionalized on the surface of SiO@GOAG.

View Article and Find Full Text PDF

A "signal-on" chemiluminescence biosensor was established for detecting thrombin. The thrombin aptamer1-functionalized magnetic sodium alginate (Malg-Apt1) hydrogel was synthesized by physical interaction between sodium alginate and Ca, and it was used in the biosensor for separating and enriching thrombin. Ethylenediamine tetraacetic acid (EDTA) was used to chelate with Ca to dissolve the hydrogel and release thrombin.

View Article and Find Full Text PDF