Publications by authors named "WeiLing Song"

Introduction: This study investigates the association between young adult partner phubbing and relationship satisfaction, with a focus on the mediating role of attachment anxiety and the moderating role of constructive conflict coping styles (voice or loyalty). Understanding these dynamics is crucial for enhancing relationship satisfaction among young adults.

Methods: A sample of 837 undergraduate students (376 male students; average age 21.

View Article and Find Full Text PDF

Accurate detection of trace tetracyclines (TCs) in complex matrices is of great significance for food and environmental safety monitoring. However, traditional recognition and amplification tools exhibit poor specificity and sensitivity. Herein, a novel dual-machine linkage nanodevice (DMLD) is proposed for the first time to achieve high-performance analysis of TC, with a padlock aptamer component as the initiation command center, nucleic acid-encoded multispike virus-like Au nanoparticles (nMVANs) as the signal indicator, and cascade walkers circuit as the processor.

View Article and Find Full Text PDF

In this work, an intelligent and versatile electrochemical biosensor was constructed to detect two types of biomarkers by utilizing "off-on-off" switching. Firstly, human apurinic/apyrimidinic endonuclease1(APE1) mediated specific cleavage of the AP site, initiating activation DNAzyme and entropy-driven catalytic (EDC) reaction. Subsequently, large amounts of ferrocene labeled single-stranded DNA was released and captured with a remarkable electrochemical signal, achieving "off-on" state.

View Article and Find Full Text PDF

A novel homologous surface-enhanced Raman scattering (SERS)-electrochemical (EC) dual-mode biosensor based on a 3D/2D polyhedral Au nanoparticle/MoO nanosheet heterojunction (PAMS HJ) and target-triggered nonenzyme cascade autocatalytic DNA amplification (CADA) circuit was constructed for highly sensitive detection of microRNA (miRNA). Mixed-dimensional heterostructures were prepared by growth of polyhedral Au nanoparticles (PANPs) on the surface of MoO nanosheets (MoO NSs) via a seed-mediated growth method. As a detection substrate, the resulting PAMS HJ shows the synergistic effects of both electromagnetic and chemical enhancements, efficient charge transfer, and robust stability, thus achieving a high SERS enhancement factor (EF) of 4.

View Article and Find Full Text PDF

Telomerase activity detection has attracted much attention concerning its importance for early cancer diagnosis. Here, we established a ratiometric electrochemical biosensor for telomerase detection based on CuS quantum dots (CuS QDs) dependent DNAzyme-regulated dual signals. The telomerase substrate probe was used as the linker to combine the DNA fabricated magnetic beads and CuS QDs.

View Article and Find Full Text PDF

As the main engine of the global economy, China has been attracting increasing foreign direct investment (FDI) since the 1980s. The frequent occurrence of pollution incidents by multinational companies and the continuous deterioration of the environment have prompted China to attach importance to environmental regulations and attempt to avoid the potential pollution heaven effect of FDI on green development. To assess the effectiveness of these environmental regulations, this paper investigates the moderating effect of environmental regulation, in particular, the heterogeneous environmental regulatory tools, on the relationship between FDI and green economic efficiency.

View Article and Find Full Text PDF

Cancer theranostics is of great significance in the personalized therapy. In this work, stable Janus nanoparticles (JNPs) containing PEG and two kinds of DNAs were prepared by means of "click chemistry". In response to ATP or acid condition, the prepared JNPs could form Au NP dimers, which facilitate in situ SERS detection and SERS imaging analysis of cancer cells due to the formation of "hot spots" in the nanogap between the Au NP dimers.

View Article and Find Full Text PDF

A DNA structure-based nanoreactor has emerged as a promising biomaterial for antitumor therapy with its intrinsic biodegradability, biocompatibility, and tunable multifunctionality. Herein, the intelligent DNA nanohydrogel was reported to target cancer cells, control the size, be pH-responsive, and be loaded with glucose oxidase (GOx). Two kinds of X-shaped DNA monomers and DNA linkers were assembled to form a DNA nanohydrogel by hybridization.

View Article and Find Full Text PDF

Herein, a one-pot alkali cutting-assisted synthesis approach has been developed to gain fluorescence (FL) tunable amino functionalized GQDs (NH-GQDs), which exhibit concentration- and excitation-dependent FL behaviors, due to the self-assembled J-type aggregation effect and different electronic transitions governed by graphene basal plane and functional groups. While NH-GQDs possess brighter FL emission than pristine GQDs, owning to the functionalization of amino groups with strong electron withdrawing ability. Particularly, the pH-dependent FL behavior of NH-GQDs further reflects the FL emission mechanism originated from the intrinsic zigzag sites and introduced amino and carboxylic groups, which is available for pH sensing.

View Article and Find Full Text PDF

Integration of disease diagnosis and therapy is crucial in precise medicine, while the "always on" mode often hinders its clinical applications. Herein, inspired by cascaded catalysis, an integrated dual-mode glucose nanosensor as an activable theranostic platform is developed, which is further exploited for cancer cell recognition and enhanced synergistic therapy of lymph cancer. This nanosensor is prepared through the in-situ growth of silver nanoparticles (AgNPs) with the synergetic reduction of tannic acid (TA) and graphene quantum dots (GQDs), which are further decorated with glucose oxidase (GOx).

View Article and Find Full Text PDF

The development of a theragnostic platform integrating precise diagnosis and effective treatment is significant but still extremely challenging. Herein, an integrated smart nanodevice composed of Au@CuS@polydopamine nanoparticles (ACSPs) and fuel DNA-conjugated tetrahedral DNA nanostructures (fTDNs) was constructed, in which the ACSP nanoprobe played multiple key roles in antitumor therapy as well as monitoring of microRNAs (miRNAs) in cancer cells. Regarding the analysis, the ACSP probe contained two optical properties: excellent surface-enhanced Raman scattering (SERS) enhancement and high fluorescence (FL) quenching performance.

View Article and Find Full Text PDF
Article Synopsis
  • Rolling circle replication (RCR) is an efficient enzymatic process used for amplifying biomolecules, making it a valuable tool for biosensing.
  • Recent advancements have expanded RCR's applications to bioimaging and drug delivery, allowing for improved targeting of biological pathways.
  • The review highlights the fundamentals of RCR, its latest detection methods and delivery systems, and discusses existing challenges as well as future opportunities in RCR-based biotechnology.
View Article and Find Full Text PDF

As a kind of promising nanomaterials, metal nanoclusters (MNCs) generally composed of several to hundreds of metal atoms have received increasing interest owing to their unique properties, such as ultrasmall size (<2 nm), fascinating physical and chemical properties, and so on. Recently, template-assisted synthesis of MNCs (e.g.

View Article and Find Full Text PDF

The regulation of biocatalytic cascades in microenvironments for high performance and extended applications is still challenging. Herein, we develop a rolling circle amplification (RCA)-based one-pot method to prepare the micron-sized DNA flowers (DFs), which achieve the co-encapsulation and spatial regulation of bi-enzyme molecules, glucose oxidase (GOx) and horseradish peroxidase (HRP). In this system, GOx and HRP are integrated into the DFs simultaneously during RCA with the bridging of magnesium between enzyme residues and phosphate backbones on DFs.

View Article and Find Full Text PDF

A novel multifunctional nanoprobe was designed for cancer cell targeted multilayer imaging of two cancer biomarkers. Based on the proposed method, in situ imaging of membrane MUC1 mucin and cytoplasmic microRNA miR-21 coupled with precise photodynamic therapy was achieved.

View Article and Find Full Text PDF

Chemo-gene therapy is an emerging synergetic modality for the treatment of cancers. Herein, we developed pH-responsive multifunctional DNA nanomicelles (DNMs) as delivery vehicles for controllable release of doxorubicin (Dox) and anaplastic lymphoma kinase (ALK)-specific siRNA for the chemo-gene synergetic therapy of anaplastic large cell lymphoma (ALCL). DNMs were synthesized by performing in situ rolling circle amplification (RCA) on the amphiphilic primer-polylactide (PLA) micelles, followed by functionalization of pH-responsive triplex DNA via complementary base pairing.

View Article and Find Full Text PDF

A sensitive and selective fluorescence assay for DNA methyltransferase (MTase) activity detection was designed based on aggregation-induced emission (AIE) and target initiated template-free DNA polymerization. Quaternized tetraphenylethene salt was synthesized as the AIE probe, which binds to single-stranded DNA by electrostatic interaction. A hairpin probe was designed with a specific sequence for DNA MTase.

View Article and Find Full Text PDF

A photocathode is described for the determination of microRNA-21 by using CuInS as an active photocathode material. Exonuclease III assisted target recycling amplification was employed to enhance the detection sensitivity. The TATA-binding protein (TBP) was applied to enhance steric hindrance which decreases the photoelectrochemical intensity.

View Article and Find Full Text PDF

A highly sensitive fluorometric method is described for the determination of mercury(II) ions. It is based on (a) the use of a DNA probe containing thymine-thymine mismatches that are employed as Hg(II) recognition elements, (b) subsequent toehold binding, and (c) endocuclease-assisted signal amplification. Target recycling is triggered by exonuclease III.

View Article and Find Full Text PDF

The Raman probe plays an essential role in sensitive surface-enhanced Raman scattering (SERS) assay. Here, a novel Raman probe was developed by assembling gold nanoparticles in triangular pyramid DNA (TP-Au NPs). Such probe with intense electromagnetic hot spots can provide dramatically enhanced Raman scattering.

View Article and Find Full Text PDF

Chemiluminescence (CL) and bioluminescence (BL) imaging technologies, which require no external light source so as to avoid the photobleaching, background interference and autoluminescence, have become powerful tools in biochemical analysis and biomedical science with the development of advanced imaging equipment. CL imaging technology has been widely applied to high-throughput detection of a variety of analytes because of its high sensitivity, high efficiency and high signal-to-noise ratio (SNR). Using luciferase and fluorescent proteins as reporters, various BL imaging systems have been developed innovatively for real-time monitoring of diverse molecules based on the reaction between luciferin and the substrate.

View Article and Find Full Text PDF

A novel aggregation-induced emission (AIE) probe comprised of a hydrophilic protein kinase specific peptide and a hydrophobic tetraphenylethene (TPE) unit was synthesized through click reaction. The prepared TPE-peptide probe could be completely degraded by carboxypeptidase Y (CPY) to release hydrophobic TPE part, which aggregated in buffer solution and showed strong TPE emission. In the presence of casein kinase (CKII), the phosphorylation of peptide prevented the complete degradation by CPY producing the nonemissive probe.

View Article and Find Full Text PDF

Based on target-triggered dynamic hairpin assembly (DHA) in both unidirectional and bilateral growth manners DNA nanobrushes are constructed, which realize sensitive and selective detection of short miRNA (miR-21) and long DNA (BRCA1), respectively. Moreover, the unidirectional DHA strategy is readily applied to in situ imaging of miR-21 in different live cells.

View Article and Find Full Text PDF

DNA has become a promising material to construct high-order structures and molecular devices owing to its sequence programmability. Herein, a DNA machine based on branched catalytic hairpin assembly (bCHA) is introduced for dynamic self-assembly of DNA dendrimers. For this system, a Y-shaped hairpin trimer tethered with three kinds of hairpins (H1, H2 and H3) is constructed.

View Article and Find Full Text PDF