Biomed Pharmacother
September 2017
Given study evaluates the cardioprotective effect of crocetin in myocardial infracted (MI) rats. MI was produced by administering isoproterenol (90mg/kg/day, i.p.
View Article and Find Full Text PDFAim: Corneal alkali burns are a severe disease and commonly encountered in the emergent clinic. A rapid medical treatment for the burn is very important. Gly-thymosin β (Gly-Tβ) is a biomimic derivative of natural thymosin β.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2017
Coding metasurfaces allow us to study metamaterials from a fully digital perspective, enabling many exotic functionalities, such as anomalous reflections, broadband diffusions, and polarization conversion. Here, we propose a tensor coding metasurface at terahertz (THz) frequency that could take full-state controls of an electromagnetic wave in terms of its polarization state, phase and amplitude distributions, and wave-vector mode. Owing to the off-diagonal elements that dominant in the reflection matrix, each coding particle could reflect the normally incident wave to its cross-polarization with controllable phases, resulting in different coding digits.
View Article and Find Full Text PDFAnalysis of the genotypic characteristics and antimicrobial susceptibility patterns of methicillin-resistant (MRSA) is essential for the control and treatment of diseases caused by this important pathogen. In this study, MRSA isolates obtained from a tertiary caret hospital in China were subjected to typing, SCC typing, multiple locus sequence typing (MLST), and PCR targeting of the genes encoding Panton-Valentine leukocidin (PVL). The disk diffusion method was used to test the antimicrobial susceptibility of the isolates to 10 non-beta-lactam antibiotics.
View Article and Find Full Text PDFIntroduction: The present study aims to evaluate the utility of D-dimer testing for differentiating the causes of acute chest pain, including acute aortic dissection (AAD), pulmonary embolism (PE), acute myocardial infarction (AMI), unstable angina (UA), and other uncertain diagnoses of chest pain.
Material And Methods: Consecutive patients admitted for acute chest pain within 24 h from symptom onset were enrolled prospectively, and plasma D-dimer levels were measured on admission. Diagnoses of AAD, PE, AMI, and UA were confirmed by standard methods.
Excitation and manipulation of surface plasmons (SPs) are essential in developing cutting-edge plasmonic devices for medical diagnostics, biochemical spectroscopy and communications. The most common approach involves designing an array of periodic slits or grating apertures that enables coupling of the incident light to the SP modes. In recent years, plasmonic resonances, including extraordinary optical transmission through periodic arrays, quasicrystals and random aperture arrays, have been investigated in the free space.
View Article and Find Full Text PDFBackground: Recently, the potential role of gut microbiome in metabolic diseases has been revealed, especially in cardiovascular diseases. Hypertension is one of the most prevalent cardiovascular diseases worldwide, yet whether gut microbiota dysbiosis participates in the development of hypertension remains largely unknown. To investigate this issue, we carried out comprehensive metagenomic and metabolomic analyses in a cohort of 41 healthy controls, 56 subjects with pre-hypertension, 99 individuals with primary hypertension, and performed fecal microbiota transplantation from patients to germ-free mice.
View Article and Find Full Text PDFPostoperative intra-abdominal adhesion is one of the most common complications in the postoperative period. Current remedies are very ineffective to prevent the pathological outcomes except steroid hormones. Rhynchophylline is deemed as a pharmacologically active component from traditional Oriental medicine Uncaria rhynchophylla (Miq.
View Article and Find Full Text PDFThe active-mirror architecture is widely used in high-power laser systems. In this study, the laser-damage characteristics of Nd:glass active mirrors are investigated. They are exposed to nanosecond 1064 nm laser incident from the Nd:glass.
View Article and Find Full Text PDFPlasmonic dimers that made from two subwavelength particles have drawn much attention in the recent years, which are quite promising in local field enhancement, sensing, high frequency conductance probing and electron tunneling. In this work, we experimentally investigate the mode transition effect of different plasmonic resonances in double-ring dimers when introducing conductive junction at the dimer gap in the terahertz regime. Without the junction, the dimers support a single dipolar bonding dimer plasmonic (BDP) mode.
View Article and Find Full Text PDFEfficient control over the conversion of optical angular momentum from spin to orbital form in a metasurface system is achieved. Under coherent symmetric incidence, it can support nearly 100% conversion and unitary output, while it can support 50% conversion with 25% transmittance under one beam incidence.
View Article and Find Full Text PDFAs an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles.
View Article and Find Full Text PDFTHz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS).
View Article and Find Full Text PDFA novel "201" nanostructure composite consisting of two-dimensional MoS nanosheets, zero-dimensional Ni nanoparticles and one-dimensional carbon nanotubes (CNTs) was prepared successfully by a two-step method: Ni nanopaticles were deposited onto the surface of few-layer MoS nanosheets by a wet chemical method, followed by chemical vapor deposition growth of CNTs through the catalysis of Ni nanoparticles. The as-prepared 201-MoS-Ni-CNTs composites exhibit remarkably enhanced microwave absorption performance compared to Ni-MoS or Ni-CNTs. The minimum reflection loss (RL) value of 201-MoS-Ni-CNTs/wax composites with filler loading ratio of 30 wt % reached -50.
View Article and Find Full Text PDFRecently reported active metamaterial analogues of electromagnetically induced transparency (EIT) are promising in developing novel optical components, such as active slow light devices. However, most of the previous works have focused on manipulating the EIT resonance strength at a fixed characteristic frequency and, therefore, realized on-to-off switching responses. To further extend the functionalities of the EIT effect, here we present a frequency tunable EIT analogue in the terahertz regime by integrating photoactive silicon into the metamaterial unit cell.
View Article and Find Full Text PDFIn the era of new and mostly effective molecular targeted therapies, human epidermal growth factor receptor 2 positive (HER2+) cancers are still intractable diseases. Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor, has greatly improved breast cancer prognosis in recent years after the initial introduction of trastuzumab (Herceptin). However, clinical evidence indicates the existence of both primary unresponsiveness and secondary lapatinib resistance, which leads to the failure of this agent in HER2+ cancer patients.
View Article and Find Full Text PDFRecent advances in graphene photonics reveal promising applications in the technologically important terahertz spectrum, where graphene-based active terahertz metamaterial modulators have been experimentally demonstrated. However, the sensitivity of the atomically thin graphene monolayer towards sharp Fano resonant terahertz metasurfaces remains unexplored. Here, we demonstrate thin-film sensing of the graphene monolayer with a high quality factor terahertz Fano resonance in metasurfaces consisting of a two-dimensional array of asymmetric resonators.
View Article and Find Full Text PDFWe have designed, fabricated and characterized dual-wavelength metasurfaces that function at two assigned terahertz wavelengths with independent phase and amplitude control at each wavelength. Specifically, we have designed a dual-wavelength achromatic metasurface-based deflector deflecting the incident wave to the same direction at two selected wavelengths, which has circumvented the critical limitation of strong wavelength dependence in the planar metasurface-based devices caused by the resonant nature of the plasmonic structures. As a proof of concept demonstration, the designed dual-wavelength achromatic deflector has been fabricated, and characterized experimentally.
View Article and Find Full Text PDFA dielectric metamaterial approach for achieving spin-selective transmission of electromagnetic waves is proposed. The design is based on spin-controlled constructive or destructive interference between propagating phase and Pancharatnam-Berry phase. The dielectric metamaterial, consisting of monolithic silicon herringbone structures, exhibits a broadband operation in the terahertz regime.
View Article and Find Full Text PDFAs a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude.
View Article and Find Full Text PDFAs an alternative solution to the limitations in adsorption properties of natural diatomite caused by its physicochemical structure defects and modification effects to diatomite using conventional physical/chemical methods, the diatomite was pillared using poly-hydroxy-aluminum to improve its adsorption properties. The change in physicochemical characteristics of the diatomite before and after pillaring were analyzed by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD). The difference in surface properties of diatomite and its adsorption characteristics of Cu, Zn before and after pillaring were analyzed at the same time.
View Article and Find Full Text PDFA toroidal dipole in metasurfaces provides an alternate approach for the excitation of high-Q resonances. In contrast to conventional multipoles, the toroidal dipole interaction strength depends on the time derivative of the surrounding electric field. A characteristic feature of toroidal dipoles is tightly confined loops of oscillating magnetic field that curl around the fictitious arrow of the toroidal dipole vector.
View Article and Find Full Text PDFA novel approach for long-distance sensing through Brillouin optical time-domain analysis (BOTDA) assisted by second-order distributed Brillouin amplification (DBA) was proposed and experimentally demonstrated. To the best of our knowledge, this is the first BOTDA study that used second-order DBA. Compared with BOTDA assisted by first-order DBA, the proposed approach enhanced the signal-to-noise ratio of the Brillouin trace by ~3 dB for a range featuring minimum sensing intensity.
View Article and Find Full Text PDFWe demonstrate a 4-f terahertz time-domain spectroscopy (THz-TDS) system using an organic crystal DSTMS as the THz emitter and a low temperature grown (LTG) InGaAs/InAlAs photoconductive antenna as the receiver. The system covers a frequency range from 0.2 up to 8 THz.
View Article and Find Full Text PDFCreation of high-density localized spins in the basal plane of graphene sheet by introduction of sp(3)-type defects is considered to be a potential route for the realization of high-magnetization graphene. Theoretical and experimental studies confirmed that hydroxyl can be an effective sp(3)-type candidate for inducing robust magnetic moment. However, the artificial generation of hydroxyl groups for creating high-density spins on the basal plane of graphene sheet is very scarce.
View Article and Find Full Text PDF