Publications by authors named "WeiJun Cao"

Article Synopsis
  • * FMDV proteins 2B and 3C are found to decrease STING expression; 3C does this via its protease activity while 2B recruits YTHDF2 to halt STING mRNA production, enhancing viral replication.
  • * Mice lacking YTHDF2 showed stronger resistance to FMDV, highlighting the role of YTHDF2 in FMDV infection and suggesting new avenues for understanding immune evasion by the virus.
View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the causal relationship between asthma and bronchiectasis, noting that while they are correlated, the exact connection hasn't been thoroughly examined before.
  • Using a two-sample Mendelian randomization approach with genome-wide data, the researchers found that asthma likely increases the risk of developing bronchiectasis.
  • They identified specific mediators such as nasal polyps and sinusitis that contribute to this relationship, and reinforced their findings with a retrospective study showing higher sinusitis and nasal polyp rates in asthma patients who also had bronchiectasis.
View Article and Find Full Text PDF

Senecavirus A (SVA), a picornavirus, causes vesicular diseases and epidemic transient neonatal losses in swine, resulting in a multifaceted economic impact on the swine industry. SVA counteracts host antiviral response through multiple strategies facilitatng viral infection and transmission. However, the mechanism of how SVA modulates interferon (IFN) response remains elusive.

View Article and Find Full Text PDF

Macroautophagy/autophagy and apoptosis are pivotal interconnected host cell responses to viral infection, including picornaviruses. Here, the VP3 proteins of picornaviruses were determined to trigger autophagy, with the autophagic flux being triggered by the TP53-BAD-BAX axis. Using foot-and-mouth disease virus (FMDV) as a model system, we unraveled a novel mechanism of how picornavirus hijacks autophagy to bolster viral replication and enhance pathogenesis.

View Article and Find Full Text PDF

Background: Leptomeningeal metastasis (LM) of small cell lung cancer (SCLC) is a highly detrimental occurrence associated with severe neurological disorders, lacking effective treatment currently. Proteolysis-targeting chimeric molecules (PROTACs) may provide new therapeutic avenues for treatment of podophyllotoxin derivatives-resistant SCLC with LM, warranting further exploration.

Methods: The SCLC cell line H128 expressing luciferase were mutated by MNNG to generate H128-Mut cell line.

View Article and Find Full Text PDF

Many viruses, including foot-and-mouth disease virus (FMDV), can promote the degradation of host proteins through macroautophagy/autophagy, thereby promoting viral replication. However, the regulatory mechanism between autophagy and innate immune responses is not fully understood during FMDV infection. Here, we found that the host GTPBP4/NOG1 (GTP binding protein 4) is a negative regulator of innate immune responses.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) is a highly contagious and economically important disease, which is caused by the FMD virus (FMDV). Although the cell receptor for FMDV has been identified, the specific mechanism of FMDV internalization after infection remains unknown. In this study, we found that kinesin family member 5B (KIF5B) plays a vital role during FMDV internalization.

View Article and Find Full Text PDF

The process of autophagy, a conservative evolutionary mechanism, is responsible for the removal of surplus and undesirable cytoplasmic components, thereby ensuring cellular homeostasis. Autophagy exhibits a remarkable level of selectivity by employing a multitude of cargo receptors that possess the ability to bind both ubiquitinated cargoes and autophagosomes. In the context of viral infections, selective autophagy plays a crucial role in regulating the innate immune system.

View Article and Find Full Text PDF

African swine fever, one of the major viral diseases of swine, poses an imminent threat to the global pig industry. The high-efficient replication of the causative agent African swine fever virus (ASFV) in various organs in pigs greatly contributes to the disease. However, how ASFV manipulates the cell population to drive high-efficient replication of the virus in vivo remains unclear.

View Article and Find Full Text PDF

Bronchoscopic lung volume reduction (BLVR) is a feasible, safe, effective and minimally invasive technique to significantly improve the quality of life of advanced severe chronic obstructive pulmonary disease (COPD). In this study, three-dimensional computed tomography (3D-CT) automatic analysis software combined with pulmonary function test (PFT) was used to retrospectively evaluate the postoperative efficacy of BLVR patients. The purpose is to evaluate the improvement of lung function of local lung tissue after operation, maximize the benefits of patients, and facilitate BLVR in the treatment of patients with advanced COPD.

View Article and Find Full Text PDF

The genomic arrangement of most picornavirus of the family shares a similar monocistronic genomic pattern and a defining organizational feature. A defining feature of picornavirus is the presence of evolutionarily conserved and highly-structured RNA elements in untranslated regions (UTRs) at the genome' 5'and 3' ends, essential for viral replication and translation. Given the diversity and complexity of RNA structure and the limitations of molecular biology techniques, the functional characterization and biological significance of UTRs remain to be fully elucidated, especially for 5' UTR.

View Article and Find Full Text PDF

The innate immune system is the first line of the host's defense, and studying the mechanisms of the negative regulation of interferon (IFN) signaling is important for maintaining the balance of innate immune responses. Here, we found that the host GTP-binding protein 4 (NOG1) is a negative regulator of innate immune responses. Overexpression of NOG1 inhibited viral RNA- and DNA-mediated signaling pathways, and NOG1 deficiency promoted the antiviral innate immune response, resulting in the ability of NOG1 to promote viral replication.

View Article and Find Full Text PDF

Unlabelled: The eighth TNM staging system proposal classifies lung cancer with partial or complete atelectasis/obstructive pneumonia into the T2 category. We aimed to develop nomograms to predict the possibility of lymph node metastasis (LNM) and the prognosis for NSCLC based on atelectasis and obstructive pneumonitis.

Methods: NSCLC patients over 20 years old diagnosed between 2004 and 2015 were selected from the Surveillance, Epidemiology, and End Results (SEER) database.

View Article and Find Full Text PDF

Cyclic GMP-AMP synthase (cGAS) plays a key role in the innate immune responses to both DNA and RNA virus infection. Here, we found that enterovirus 71 (EV-A71), Seneca Valley virus (SVV), and foot-and-mouth disease virus (FMDV) infection triggered mitochondria damage and mitochondrial DNA (mtDNA) release in vitro and vivo. These responses were mediated by picornavirus 2B proteins which induced mtDNA release during viral replication.

View Article and Find Full Text PDF

Foot-and-mouth disease, a class of animal diseases, is caused by foot-and-mouth disease virus (FMDV). The metabolic changes during FMDV infection remain unclear. Here, PK-15 cells, serum, and tonsils infected with FMDV were analyzed by metabolomics.

View Article and Find Full Text PDF

The pathogenic mechanisms of peste des petits ruminants virus (PPRV) infection remain poorly understood, leaving peste des petits ruminants (PPR) control and eradication especially difficult. Here, we determined that PPRV nucleocapsid (N) protein triggers formation of stress granules (SGs) to benefit viral replication. A mass spectrometry-based profiling of the interactome of PPRV N protein revealed that PPRV N protein interacted with protein kinase R (PKR)-activating protein (PACT), and this interaction was confirmed in the context of PPRV infection.

View Article and Find Full Text PDF

African swine fever is one of the most serious viral diseases that affects domestic and wild pigs. The causative agent, African swine fever virus (ASFV), has evolved sophisticated immune evasion mechanisms that target both innate and adaptive immune responses. However, the underlying molecular mechanisms have not been fully understood.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) is the causative agent of foot-and-mouth disease, one of the most highly infectious animal viruses throughout the world. The JAK-STAT signaling pathway is a highly conserved pathway for IFN-β-induced antiviral gene expression. Previous studies have shown that FMDV can strongly suppress the innate immune response.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) is a highly contagious virus that causes severe vesicular disease of cloven-hoofed animals. Various endocytosis mechanisms are involved in the entry of FMDV after binding to the integrin and heparan sulfate (HS) receptors. However, the mechanism of FMDV using other unknown receptors to enter the cells remains unclear.

View Article and Find Full Text PDF

The foot-and-mouth disease virus (FMDV) 2C protein shares conserved motifs with enterovirus 2Cs despite low sequence identity. Here, we determine the crystal structure of an FMDV 2C fragment to 1.83 Å resolution, which comprises an ATPase domain, a region equivalent to the enterovirus 2C zinc-finger (ZFER), and a C-terminal domain harboring a loop (PBL) that occupies a hydrophobic cleft (Pocket) in an adjacent 2C molecule.

View Article and Find Full Text PDF

The RIG-I-like receptor signaling pathway is crucial for producing type I interferon (IFN-I) against RNA viruses. The present study observed that viral infection increased annexin-A1 (ANXA1) expression, and ANXA1 then promoted RNA virus-induced IFN-I production. Compared to ANXA1 wild-type cells, ANXA1 knockout cells showed IFN-β production decreasing after viral stimulation.

View Article and Find Full Text PDF

African swine fever (ASF) is a highly pathogenic swine infectious disease that affects domestic pigs and wild boar, which is caused by the African swine fever virus (ASFV). ASF has caused huge economic losses to the pig industry and seriously threatens global food security and livestock health. To date, there is no safe and effective commercial vaccine against ASF.

View Article and Find Full Text PDF

Senecavirus A (SVA) infection induces inflammation in animals, such as fever, diarrhea, vesicles and erosions, and even death. The inflammatory cytokine interleukin-1β (IL-1β) plays a pivotal role in inflammatory responses to combat microbes. Although SVA infection can produce inflammatory clinical symptoms, the modulation of IL-1β production by SVA infection remains unknown at present.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) infection causes inflammatory clinical symptoms, such as high fever and vesicular lesions, even death of animals. Interleukin-1β (IL-1β) is an inflammatory cytokine that plays an essential role in inflammatory responses against viral infection. The viruses have developed multiple strategies to induce the inflammatory responses, including regulation of IL-1β production.

View Article and Find Full Text PDF

Senecavirus A (SVA) is an oncolytic virus, which can propagate in human tumor cells and has been used as an oncolytic virotherapy candidate in humans. Besides, SVA circulates in pigs and causes vesicles and coalescing erosions on the snouts and coronary bands in infected pigs and results in neonatal morbidity. SVA has evolved the ability to suppress host innate immune response to benefit viral replication.

View Article and Find Full Text PDF