Publications by authors named "WeiHua Ni"

Inflammatory bowel disorders (IBD) can lead to severe complications like perforation, bleeding, and colon cancer, posing life-threatening risks. Murray ( Murr.), rich in polysaccharides, has been utilized in traditional diets for thousands of years.

View Article and Find Full Text PDF

, a non-sexual form of the valuable Chinese medicinal herb, demonstrates various biological activities, such as immune modulation and antioxidative capabilities. Nonetheless, the effects of bioactive polysaccharides derived from on colitis have yet to be investigated. In our prior research, we extracted a mannoglucan (HSWP-1d) from and found that it attenuates TGF-β1-induced epithelial-mesenchymal transition.

View Article and Find Full Text PDF

To achieve uniform cooling and effective homogenization control in ultra-large beam-blank molds necessitates the optimization of submerged-entry-nozzle (SEN) structures. This study employed computational fluid dynamic (CFD) modeling to investigate the impact of two-port and three-port SEN configurations on fluid flow characteristics, free-surface velocities, temperature fields, and solidification behaviors. Subsequently, integrating numerical simulations with the non-dominated sorting genetic algorithm II (NSGA-II) and metallurgical quality-control expertise facilitated the multi-objective optimization of a three-port SEN structure suitable for beam-blank molds.

View Article and Find Full Text PDF

Background: Angong Niuhuang Wan (AGNHW, ), is a classical medicinal formula in Traditional Chinese Medicine (TCM) that has been appreciated for its neuroprotective properties in ischemic cerebral injuries, yet its intricate mechanisms remain only partially elucidated.

Aims: This study leverages advanced Mass cytometry (CyTOF) to analyze AGNHW's multifaceted immunomodulation effects in-depth, emphasizing previously underexplored areas.

Results: AGNHW mitigated monocyte-derived macrophages (MoDM) infiltration in the brain, distinguishing its effects on those from microglia.

View Article and Find Full Text PDF

Purpose: To develop a combined radiomics and deep learning (DL) model in predicting radiation esophagitis (RE) of a grade ≥ 2 for patients with esophageal cancer (EC) underwent volumetric modulated arc therapy (VMAT) based on computed tomography (CT) and radiation dose (RD) distribution images.

Materials And Methods: A total of 273 EC patients underwent VMAT were retrospectively reviewed and enrolled from two centers and divided into training (n = 152), internal validation (n = 66), and external validation (n = 55) cohorts, respectively. Radiomic and dosiomic features along with DL features using convolutional neural networks were extracted and screened from CT and RD images to predict RE.

View Article and Find Full Text PDF

Background And Objective: To evaluate the feasibility and accuracy of radiomics, dosiomics, and deep learning (DL) in predicting Radiation Pneumonitis (RP) in lung cancer patients underwent volumetric modulated arc therapy (VMAT) to improve radiotherapy safety and management.

Methods: Total of 318 and 31 lung cancer patients underwent VMAT from First Affiliated Hospital of Wenzhou Medical University (WMU) and Quzhou Affiliated Hospital of WMU were enrolled for training and external validation, respectively. Models based on radiomics (R), dosiomics (D), and combined radiomics and dosiomics features (R+D) were constructed and validated using three machine learning (ML) methods.

View Article and Find Full Text PDF

Background: To integrate radiomics and dosiomics features from multiple regions in the radiation pneumonia (RP grade ≥ 2) prediction for esophageal cancer (EC) patients underwent radiotherapy (RT).

Methods: Total of 143 EC patients in the authors' hospital (training and internal validation: 70%:30%) and 32 EC patients from another hospital (external validation) underwent RT from 2015 to 2022 were retrospectively reviewed and analyzed. Patients were dichotomized as positive (RP+) or negative (RP-) according to CTCAE V5.

View Article and Find Full Text PDF

In this study, we explored the possible mechanism of tumor tolerance induced by multiple repeated immunizations with a tumor vaccine (MUC1-MBP fusion protein plus CpG2006). We first analyzed the mechanism of tolerance by immunizing tumor-bearing mice 2, 5, or 8 times and found that compared with five immunizations with the M-M vaccine, eight immunizations increased tumor volume and weight and Treg levels, while the proportions of Th1 and Tc1 cells in the spleen and lymph nodes were decreased. In particular, the M-M vaccine induced PD-L1 expression in CD11c + DCs and decreased their CD80/PD-L1 ratio.

View Article and Find Full Text PDF

Mucin 1 (MUC1) was the first discovered transmembrane protein of the mucin family; it normally covers epithelial cells of the mucous membrane, providing lubrication and protection. However, aberrant expression of MUC1 is involved in cancer development, invasion and metastasis. It has been reported that MUC1 upregulation is highly associated with the progression of different epithelial cancer types, such as lung, liver, pancreatic and breast cancer.

View Article and Find Full Text PDF

Our previous study found that CpG oligodeoxynucleotides 1826 (CpG 1826), combined with mucin 1 (MUC1)-maltose-binding protein (MBP) (M-M), had certain antitumor activity. However, this combination is less than ideal for tumor suppression (tumors vary in size and vary widely among individuals), with a drawback being that CpG 1826 is unstable. To solve these problems, here, we evaluate MF59/CpG 1826 as a compound adjuvant with M-M vaccine on immune response, tumor suppression and survival.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates how a new cancer vaccine, made with a MUC1-MBP fusion protein and CpG2006, triggers and regulates specific CTL (cytotoxic T lymphocyte) responses against tumors.
  • - It was found that vaccination leads to an increase in activated dendritic cells (cDC1s, cDC2s, and pDCs) in mouse lymph nodes, largely due to the action of CpG2006.
  • - The research highlights that type I IFN signaling is crucial for CTL activity, as blocking this signaling in cDC1s significantly reduced CTL killing ability, suggesting that this pathway plays a key role in enhancing the immune response to the vaccine.
View Article and Find Full Text PDF

Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) signaling is a critical positive mechanism for the development, homeostasis and activation of immune cells. We investigated the effect of TRAF6 overexpression on dendritic cells (DCs) maturation. TRAF6-overexpressing DCs had increased expression of costimulatory molecules, major histocompatibility complex (MHC) molecules and IL-12 expression.

View Article and Find Full Text PDF

In previous studies, we have obtained a notable anti-tumor efficacy of the recombinant MUC1-MBP vaccine in the process of mouse B16-MUC1 melanoma treatment. However, the tumor cannot be eliminated completely. We found that the tumor inhibition rate decreased from 81.

View Article and Find Full Text PDF

Bobr. has been used for thousands of years as a native folk medicine to alleviate dizziness and neurasthenia due to oxygen. In our previous study, natural antioxidant components (namely, NJBE) were isolated from industrial Bobr.

View Article and Find Full Text PDF

Ischemic postconditioning (IPostC) is a concept of ischemic stroke treatment, in which several cycles of brief reocclusion after reperfusion are repeated. It is essential to have an accurate understanding of the immune response in IPostC. By using high parametric single-cell mass cytometry, immune cell subsets and characterize their unique functions from ischemic brain and peripheral blood were identified after IPostC.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) are one of the major components of the tumor microenvironment (TME), and are the main mediators of tumor-induced immunosuppression. Recent studies have reported that the survival, differentiation and immunosuppressive activity of MDSCs are affected by the Toll-like receptor (TLR) signaling pathway. However, the regulatory effect of TLR signaling on MDSCs remains controversial.

View Article and Find Full Text PDF

Gene expression and DNA methylation levels affect the outcomes of patients with cancer. The present study aimed to establish a multigene risk model for predicting the outcomes of patients with cervical cancer (CerC) treated with or without radiotherapy. RNA sequencing training data with matched DNA methylation profiles were downloaded from The Cancer Genome Atlas database.

View Article and Find Full Text PDF

Mucin 1 (), being an oncogene, is an attractive target in tumor immunotherapy. Maltose binding protein (MBP) is a potent built-in adjuvant to enhance protein immunogenicity. Thus, a recombinant MUC1 and MBP antitumor vaccine (M-M) was constructed in our laboratory.

View Article and Find Full Text PDF

Our previous study demonstrated that maltose-binding protein (MBP) activated Th1 through the TLR2-mediated MyD88-dependent pathway and the TLR4-mediated TRIF-dependent pathway. The combination of MBP and BCG synergistically induced Th1 activation, and the TLR2/9-mediated MyD88-dependent pathway is involved in this process. To further explore this mechanism, we stimulated purified mouse CD4 T cells with MBP and BCG in vitro.

View Article and Find Full Text PDF

Our previous study isolated a natural high-methoxyl homogalacturonan (HRWP-A) from Hippophae rhamnoides and showed antitumor activity in vivo. In this study, the immunomodulatory activity and mechanisms of action of HRWP-A were further investigated. Results showed that HRWP-A could recover the body condition and activated macrophage in Cyclophosphamide (CTX)-induced immunosuppressed mice.

View Article and Find Full Text PDF

MBP (maltose-binding protein) is a component of Escherichia coli. Our previous study found that MBP directly induces the activation of Th1 (T helper type 1), but the molecular mechanism remains unclear. In the present study, CD4T cells were purified from the spleens of normal mice using antibody-coated immunomagnetic beads by negative selection.

View Article and Find Full Text PDF

Unlabelled: Subglottic stenosis (SGS) is a common cause of obstructed airway in children, and the treatment of pediatric SGS, especially congenital SGS, remains a challenge for the otolaryngologist.

Objective: To analyze the outcomes of endoscopic management in young children with SGS.

Methods: We performed a retrospective review of treatment with endoscopic balloon dilation (EBD) or EBD combined with endoscopic anterior cricoid split (EACS) for young SGS children, from December 2008 to December 2015.

View Article and Find Full Text PDF

To explore whether TLR2/TLR4 could be involved in the maturation of dendritic cells and polarization of CD4 T cells induced by dendritic cells stimulated with MBP and BCG, in vitro and in vivo experiments using TLR2 or TLR4 mice were employed. MBP and BCG elevated CD80, CD86 and MHC class II expressed on dendritic cells and increased IL-12 protein, induced DC maturation, and indirectly promoted Th1 activation. Moreover, MBP and BCG upregulated costimulatory molecules on DCs in a TLR2- and TLR4-dependent manner.

View Article and Find Full Text PDF

Mucin 1 (MUC1), as an oncogene, is overexpressed in hepatocellular carcinoma (HCC) cells and promotes the progression and tumorigenesis of HCC through JNK/TGF-β signaling pathway. In the present study, RNA interference (RNAi) and JNK inhibitor SP600125, which target MUC1 and/or JNK, were used to treat HCC cells in vitro, and the results showed that both silencing the expression of MUC1 and blocking the activity of JNK inhibited the proliferation of HCC cells. In addition, MUC1-stable-knockdown and SP600125 significantly inhibited the growth of tumors in the subcutaneous transplant tumor models that established in BALB/c nude mice rather than MUC1 or JNK siRNAs transiently transfection.

View Article and Find Full Text PDF

Our previous study demonstrated that maltose-binding protein (MBP) combined with BCG induced synergistic mouse Th1 activation in vivo. Here, to explore the mechanism of MBP combined with BCG on Th1 activation, mouse purified CD4 T cells were stimulated with MBP and BCG in vitro. The results showed that MBP combined with BCG synergistically increased IFN-γ production, accompanied with the upregulation of TLR2/9 expressions, suggesting that TLR2/9 were involved in the combination-induced Th1 activation.

View Article and Find Full Text PDF