The incorporation of high-valence transition metal atoms into FeNi (oxy)hydroxides may be a promising strategy to regulate the intrinsic electronic states, thereby reducing the thermodynamic barrier and accelerating oxygen evolution reaction (OER). Here, a high-valence Mo atoms doping route is proposed by an efficient self-reconstruction strategy to prepare MoFeNi (oxy)hydroxides for efficient alkaline OER. By using borides (MoNiB) as sacrificial template and Mo source, FeNi (oxy)hydroxides nanoflakes embedded with high-valence Mo atoms (MoFeNi) is successfully synthesized, which can modulate the electron coordination to improve the intrinsic catalytic activity.
View Article and Find Full Text PDFGlycerol (electrochemical) oxidation reaction (GOR) producing organic small molecule acid and coupling with hydrogen evolution reaction is a critical aspect of ensuring balanced glycerol capacity and promoting hydrogen generation on a large scale. However, the development of highly efficient and selective non-noble metal-based GOR electrocatalysts is still a key problem. Here, an S-doped CuO nanorod array catalyst (S-CuO/CF) constructed by sulfur leaching and oxidative remodeling is used to drive GOR at low potentials: It requires potentials of only 1.
View Article and Find Full Text PDFContext Litsea cubeba (Lour.) Pers. (Lauraceae) has long been used as a folk remedy in Traditional Chinese Medicine (TCM) for the treatment of rheumatic diseases.
View Article and Find Full Text PDFLoss of hepatitis B surface antigen (HBsAg) is considered to reflect the resolution of a hepatitis B virus (HBV) infection. Patient characteristics and various seromarkers were evaluated to characterize factors predicting spontaneous HBsAg loss in a cohort of HBeAg-seronegative patients with presumed chronic HBV infection. Relationships between seromarkers and HBsAg loss were assessed annually and after 6 years using binary logistic regression.
View Article and Find Full Text PDFWe previously reported that glucocorticoid receptor β (GRβ) regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of β-catenin/T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional activity. The aim of this study was to characterize the mechanism behind cross-talk between GRβ and β-catenin/TCF in the progression of glioma. Here, we reported that GRβ knockdown reduced U118 and Shg44 glioma cell proliferation in vitro and in vivo.
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
June 2010
Cancer Chemother Pharmacol
August 2010
We have previously shown that the expression of glucosylceramide synthase (GCS) gene in drug-resistant K562/AO2 human leukemia cell was higher than that in drug-sensitive K562 cell, and the sensitivity to adriamycin of K562/AO2 cell was enhanced by inhibiting GCS. It is concluded that the overexpression of GCS gene is one of the reasons which lead to multidrug resistance (MDR) of leukemia cell. Meanwhile, we also found that higher expression of Bcl-2 gene and protein were exhibited in K562/AO2 cell compared with K562 cell.
View Article and Find Full Text PDF