Publications by authors named "Wei-dong Fei"

Article Synopsis
  • Methotrexate (MTX) is an effective drug for inflammatory and autoimmune diseases, but its use through the skin is limited because it doesn't penetrate well.
  • Researchers created MTX-loaded micelles using a cationic material called DMSAP to improve its delivery and reduce side effects.
  • The study found that these micelles can effectively penetrate the skin and deliver MTX more efficiently than the drug in its free form, suggesting they could be a useful treatment method for skin diseases.
View Article and Find Full Text PDF

Three iridium(III) complexes [Ir(ppy)(CPIP)](PF) (Ir-1, ppy = 2-phenylpyridine, CPIP = 2-(4-chlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(ppy)(DCPIP)](PF) (Ir-2, DCPIP = 2-(3,4-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(ppy)(TCPIP)](PF) (Ir-3, TCPIP = 2,3,5-trichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized. The complexes Ir-1, Ir-2 and Ir-3 were encapsulated in liposomes to form Ir-1-Lipo, Ir-2-Lipo and Ir-3-Lipo. Morphology, size distribution, and zeta potential of liposomes were examined by transmission electron microscopy (TEM) and Zetasizer.

View Article and Find Full Text PDF

The aim of this study was to examine the effectiveness of alanine-proline-arginine-proline-glycine (APRPG) peptide-conjugated PEGylated cationic liposomes-encapsulated zoledronic acid (ZOL) (APRPG-PEG-ZOL-CLPs) in achieving vascular normalization. Cisplatin (diamminedichloroplatinum, DDP) was used to improve anticancer efficacy. The present study showed that APRPG-PEG-ZOL-CLPs increased anticancer efficacy, which was regarded as vascular normalization.

View Article and Find Full Text PDF

Background: Ovarian cancer is a common malignancy in the female reproductive system with a high mortality rate. The most important reason is multidrug resistance (MDR) of cancer chemotherapy. To reduce side effects, reverse resistance and improve efficacy for the treatment of ovarian cancer, a "core-shell" polymeric nanoparticle-mediated curcumin and paclitaxel co-delivery platform was designed.

View Article and Find Full Text PDF

The metronomic administration of a low-dose cytotoxic agent with no prolonged drug-free breaks is an anti-angiogenic cancer treatment method. The use of nano-formulations in this manner enhances anti-tumor efficacy and reduces toxicity by inhibiting angiogenic activity, reduces adverse effects, and changes the biodistribution of TP in the body, steering TP away from potentially endangering healthy tissues. The present study uses liposomes and Asn-Gly-Arg (NGR) peptide conjugated aminopeptidase N(APN)-targeted liposomes for triptolide (TP), as a model for the investigation of targeted metronomic administration and subsequent effects on the toxicity profile and efficacy of the chemotherapeutic agent.

View Article and Find Full Text PDF

The potential window of aqueous supercapacitors is limited by the theoretical value (≈1.23 V) and is usually lower than ≈1 V, which hinders further improvements for energy density. Here, a simple and scalable method is developed to fabricate unique graphene quantum dot (GQD)/MnO heterostructural electrodes to extend the potential window to 0-1.

View Article and Find Full Text PDF

Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed.

View Article and Find Full Text PDF

The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs.

View Article and Find Full Text PDF

The high piezoelectricity of ABO3-type lead-free piezoelectric materials can be achieved with the help of either morphotropic phase boundary (MPB) or polymorphic phase transition (PPT). Here, we propose a new defect engineering route to the excellent piezoelectric properties, in which doped smaller acceptor and donor ions substituting bivalent A-sites are utilized to bring local lattice distortion and lower symmetry. A concrete paradigm is presented, (Li-Al) codoped BaTiO3 perovskite, that exhibits a largely thermo-stable piezoelectric constant (>300 pC/N) and huge mechanical quality factor (>2000).

View Article and Find Full Text PDF

A novel targeting drug carrier (FA-BO-PAMAM) based on the PAMAM G5 dendrimer modified with borneol (BO) and folic acid (FA) molecules on the periphery and doxorubicin (DOX) loaded in the interior was designed and prepared to achieve the purposes of enhancing the blood-brain barrier (BBB) transportation and improving the drug accumulation in the glioma cells. 1H NMR was used to confirm the synthesis of FA-BO-PAMAM; its morphology and mean size were analyzed by dynamic light scattering (DLS) and transmission electron microscope (TEM). Based on the HBMEC and C6 cells, cytotoxicity assay, transport across the BBB, cellular uptake and anti-tumor activity in vitro were investigated to evaluate the properties of nanocarriers in vitro.

View Article and Find Full Text PDF

Pristine graphene with a 3D structure is desired for use in graphene-based supercapacitors, yet the very poor wettability of such graphene in water has limited its practical application. Here we report a way to simultaneously realize the 3D structure and good wettability in vertically-oriented few-layered graphene (VFG) grown by plasma-enhanced chemical vapor deposition. Based on scanning and transmission electron microscopic, Raman spectroscopic, contact angle (CA) and electrochemical analyses, a mechanism to explain the improved performance of VFG-based supercapacitors by defect-stimulated increases in wettability is proposed.

View Article and Find Full Text PDF