Purpose: The KUNPENG study aimed to evaluate the efficacy and safety of vebreltinib (also known as bozitinib, APL-101, PLB-1001, and CBT-101), a potent and highly selective inhibitor of c-mesenchymal-epithelial transition (), in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring c-Met alterations.
Methods: This multicenter, multicohort, open-label, single-arm, phase II trial enrolled patients with c-Met dysregulated, locally advanced or metastatic NSCLC from January 2020 to August 2022 across 17 centers. Cohort 1 included patients with exon 14 skipping (ex14)-mutant NSCLC who had not previously received inhibitors.
Both 6-substituted aminocarbonyl and acylamino benzimidazole derivatives were designed and synthesized as nonpeptidic angiotensin II AT₁ receptor antagonists. Compounds 6f, 6g, 11e, 11f, 11g, and 12 showed nanomolar AT₁ receptor binding affinity and high AT₁ receptor selectivity over AT₂ receptor in a preliminary pharmacological evaluation. Among them, the two most active compounds 6f (AT₁ IC₅₀ = 3 nM, AT₂ IC₅₀ > 10,000 nM, PA₂ = 8.
View Article and Find Full Text PDFA series of 6-substituted carbamoyl benzimidazoles were designed and synthesised as new nonpeptidic angiotensin II AT(1) receptor antagonists. The preliminary pharmacological evaluation revealed a nanomolar AT(1) receptor binding affinity for all compounds in the series, and a potent antagonistic activity in an isolated rabbit aortic strip functional assay for compounds 6f, 6g, 6h and 6k was also demonstrated. Furthermore, evaluation in spontaneous hypertensive rats and a preliminary toxicity evaluation showed that compound 6g is an orally active AT(1) receptor antagonist with low toxicity.
View Article and Find Full Text PDFA series of 6-substituted aminocarbonyl benzimidazole derivatives were designed and synthesized as nonpeptidic angiotensin II AT(1) receptor antagonists. The preliminary pharmacological evaluation revealed nanomolar AT(1) receptor binding affinity and good AT(1) receptor selectivity over AT(2) receptor for all compounds of the series, a potent antagonistic activity in isolated rabbit aortic strip functional assay for compounds 6b, 6d and 6i was also demonstrated. Furthermore, evaluation in spontaneous hypertensive rats and a preliminary toxicity evaluation showed that compound 6i is an orally active AT(1) receptor antagonist with low toxicity.
View Article and Find Full Text PDFYao Xue Xue Bao
September 2009
Three-dimensional pharmacophore models were generated for AT1 and ET(A) receptors based on highly selective AT1 and ET(A) antagonists using the program Catalyst/HipHop. Both the best pharmacophore model for selective AT1 antagonists (Hypo-AT(1)-7) and ETA antagonists (Hypo-ET(A)-1) were obtained through a careful validation process. All five features contained in Hypo-AT(1)-7 and Hypo-ET(A)-1 (hydrogen-bond acceptor (A), hydrophobic aliphatic (Z), negative ionizable (N), ring aromatic (R), and hydrophobic aromatic (Y)) seem to be essential for antagonists in terms of binding activity.
View Article and Find Full Text PDF