Purpose: Non-invasive methods for predicting pathological complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT) can provide distinct leverage in the management of patients with locally advanced rectal cancer (LARC). This study aimed to investigate whether including the golden-angle radial sparse parallel (GRASP) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion parameter (K), in addition to tumor regression grading (TRG) and apparent diffusion coefficient (ADC) values, can improve the predictive ability for pCR.
Methods: Patients with LARC who underwent nCRT and subsequent surgery were included.
Ecotoxicol Environ Saf
January 2024
To investigate the impact of the ethanoic fractions of Periploca forrestii Schltr. (P. forrestii) in ameliorating the liver injury caused by fluoride ingestion and to explore the potential mechanisms.
View Article and Find Full Text PDFBackground: Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is closely related to aggressive phenotype, gene mutation, carcinogenic pathway, and immunohistochemical markers and is a strong independent predictor of early recurrence and poor prognosis. With the development of imaging technology, successful applications of contrast-enhanced magnetic resonance imaging (MRI) have been reported in identifying the MTM-HCC subtype. Radiomics, as an objective and beneficial method for tumour evaluation, is used to convert medical images into high-throughput quantification features that greatly push the development of precision medicine.
View Article and Find Full Text PDFObjective: To investigate clinical characteristics, radiological features and biomarkers of pancreatic metastases of small cell lung carcinoma (PM-SCLC), and establish a convenient nomogram diagnostic predictive model to differentiate PM-SCLC from pancreatic ductal adenocarcinomas (PDAC) preoperatively.
Methods: A total of 299 patients with meeting the criteria (PM-SCLC n=93; PDAC n=206) from January 2016 to March 2022 were retrospectively analyzed, including 249 patients from hospital 1 (training/internal validation cohort) and 50 patients from hospital 2 (external validation cohort). We searched for meaningful clinical characteristics, radiological features and biomarkers and determined the predictors through multivariable logistic regression analysis.
Introduction: The aim of this work was to determine the feasibility of using a deep learning approach to predict occult lymph node metastasis (OLM) based on preoperative FDG-PET/CT images in patients with clinical node-negative (cN0) lung adenocarcinoma.
Materials And Methods: Dataset 1 (for training and internal validation) included 376 consecutive patients with cN0 lung adenocarcinoma from our hospital between May 2012 and May 2021. Dataset 2 (for prospective test) used 58 consecutive patients with cN0 lung adenocarcinoma from June 2021 to February 2022 at the same center.