In this study, a novel moiré fringe analysis technique is proposed for measuring the surface profile of an object. After applying a relative displacement between two gratings at a constant velocity, every pixel of CMOS camera can capture a heterodyne moiré signal. The precise phase distribution of the moiré fringes can be extracted using a one-dimensional fast Fourier transform (FFT) analysis on every pixel, simultaneously filtering the harmonic noise of the moiré fringes.
View Article and Find Full Text PDFA new one-step derivatization and microextraction technique was developed for the fluorometric determination of C(1)-C(8) linear aliphatic primary amines in complex sample solutions containing high levels of amino acids. In this method, amines were derivatized with o-phthalaldehyde (OPA) and 2-mercaptoethanol (2-ME) in aqueous solution and extracted simultaneously by vortex-assisted liquid-liquid microextraction (VALLME). Parameters affecting the extraction efficiency were investigated in detail.
View Article and Find Full Text PDFIn a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect.
View Article and Find Full Text PDFA linearly/circularly polarized heterodyne light beam coming from a heterodyne light source with an electro-optic modulator in turn enters a modified Twyman-Green interferometer to measure the surface plane of a GRIN lens. Two groups of periodic sinusoidal segments recorded by a fast complementary metal-oxide semiconductor camera are modified, and their associated phases are derived with the unique technique. The data are substituted into the special equations derived from the Fresnel equations, and the refractive index can be obtained.
View Article and Find Full Text PDFIn a modified Michelson interferometer, the top face of the wringing platen is first identified using the heterodyne central fringe identification technique. Then the reference mirror located in the other arm is moved by a precision translation stage until the top face of the tested gauge block is also identified with the same technique. The displacement of the mirror is exactly equivalent to the length of the tested gauge block.
View Article and Find Full Text PDFThis work proposes a simple method, based on the crystal rotation technique and heterodyne interferometry, to simultaneously determine the pretilt angle and cell gap of nematic liquid crystal cells. When heterodyne light passes through a nematic liquid crystal cell, the phase retardation given by the characteristic parameters of the cell can be measured accurately by heterodyne interferometry. This phase retardation relates to the pretilt angle, cell gap, and angle of incidence on the cell.
View Article and Find Full Text PDF