Publications by authors named "Wei-Yang Sun"

Porous BiO-BiS composite sheets were constructed through a combinational methodology of chemical bath deposition and hydrothermal reaction. The NaS precursor concentration in the hydrothermal solution was varied to understand the correlation between the vulcanization degree and structure evolution of the porous BiO-BiS composite sheets. The control of the etching rate of the BiO sheet template and the regrowth rate of BiS crystallites via suitable sulfide precursor concentration during the hydrothermal reaction utilizes the formation of porous BiO-BiS sheets.

View Article and Find Full Text PDF

The dynamics, duration, and nature of immunity produced during SARS-CoV-2 infection are still unclear. Here, we longitudinally measured virus-neutralising antibody, specific antibodies against the spike (S) protein, receptor-binding domain (RBD), and the nucleoprotein (N) of SARS-CoV-2, as well as T cell responses, in 25 SARS-CoV-2-infected patients up to 121 days post-symptom onset (PSO). All patients seroconvert for IgG against N, S, or RBD, as well as IgM against RBD, and produce neutralising antibodies (NAb) by 14 days PSO, with the peak levels attained by 15-30 days PSO.

View Article and Find Full Text PDF

Strain-mediated thin film multiferroics comprising piezoelectric/ferromagnetic heterostructures enable the electrical manipulation of magnetization with much greater efficiency than other methods; however, the investigation of nanostructures fabricated from these materials is limited. Here we characterize ferromagnetic Ni nanostructures grown on a ferroelectric PMN-PT substrate using scanning electron microscopy with polarization analysis (SEMPA) and micromagnetic simulations. The magnetization of the Ni nanostructures can be controlled with a combination of sample geometry and applied electric field, which strains the ferroelectric substrate and changes the magnetization via magnetoelastic coupling.

View Article and Find Full Text PDF

Nanomagnetic logic has emerged as a potential replacement for traditional Complementary Metal Oxide Semiconductor (CMOS) based logic because of superior energy-efficiency (Salahuddin and Datta 2007 Appl. Phys. Lett.

View Article and Find Full Text PDF

Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model, assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes increasingly inaccurate for smaller in-plane nanoscale structures. This paper presents analytical work intended to significantly improve the simulation of finite structures by fully coupling the LLG model with elastodynamics, i.

View Article and Find Full Text PDF