This report develops a point-of-use chemical trigger and applies it to a dual-functional chemical encryption chip that enables manual and digital identification with enhanced coding security levels suitable for on-site information verification. The concept relies on conducting continuous chemical synthesis and chromatographic separation of specified compounds on a paper device in a straightforward sketch. In addition to single-step chemical reactions, cascade syntheses and operations involving components of distinct mobilities are also demonstrated.
View Article and Find Full Text PDFSurface-specific sum frequency generation vibrational spectroscopy is applied to study the molecular configuration of short-chain n-alkanethiol self-assembled monolayers (SAMs with n = 2-6) on the Au surface. For monolayers with n≥ 3, the alkanethiols are upright-oriented, with the CH3 tilt angle varying between ∼33° and ∼46° in clear even-odd dependency. The ethanethiol monolayer (n = 2) is, however, found to exhibit a distinct lying-down configuration with a larger methyl tilt angle (67°-79°) and a smaller CH2 tilt angle (56°-68°).
View Article and Find Full Text PDFAs biological enzymes regulate metabolic processes, alkaline phosphatase (ALP) is a critical diagnostic indicator associated with many diseases. To accurately measure the enzyme activity, nanozymactic materials can offer sensitive strategies for ALP detection. However, nanozymes often lack specific target binding sites, and the presence of common co-components, e.
View Article and Find Full Text PDFGuiding metal organic framework (MOF) morphology, especially without the need for chemical additives, still remains a challenge. For the first time, we report a unique surface guiding approach in controlling the crystal morphology formation of zeolitic imidazole framework-8 (ZIF-8) and HKUST-1 MOFs on disrupted alkanethiol self-assembled monolayer (SAM)-covered Au substrates. Selective molecule removal is applied to generate diverse SAM matrices rich in artificial molecular defects in a monolayer to direct the dynamic crystal growth process.
View Article and Find Full Text PDFWe introduce a unique soft lithographic operation that exploits stamp roof collapse-induced gaps to selectively remove an alkanethiol self-assembled monolayer (SAM) on Au to generate surface patterns that are orders of magnitude smaller than structures on the original elastomer stamp. The smallest achieved feature dimension is 5 nm using a micrometer-scale structured stamp in a chemical lift-off lithography (CLL) process. Molecular patterns retained in the gaps between stamp features and their circumscribed or inscribed circles follow mathematical predictions, and their sizes can be tuned by altering the stamp structure dimensions, including height, pitch, and shape.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
Flexible and transparent electronics is a new generation of device enabling modern interactive designs, which facilitates the recent development of low-cost, lightweight, and flexible materials. Although conventional indium tin oxide material still dominates the major market, its brittleness and steadily increasing price drive scientists to search for other alternatives. To meet the high demand, numerous metallic or organic conductive materials have been developed, but their poor adhesion toward supporting substrates and the subsequent circuit patterning approach remains problematic.
View Article and Find Full Text PDFIt is always preferred to perform chemical processes in liquid or gas phases because of the merits of operation convenience, reaction efficiency, and component homogeneity. However, tremendous efforts have to be made to purify the final product and minimize procedure losses unless a well-defined chemical mechanism is found. Herein, an unconventional chemical functioning system accommodating molecule-in-pseudosolid manipulation is reported.
View Article and Find Full Text PDFWater-borne pathogens are mostly generated due to poor sanitation, industrial effluents, and sewage sludge, leading to a significant increase in mortality rate. To prevent this, we need a simple, user-friendly, and rapid on-site detection tool of pathogens, i.e.
View Article and Find Full Text PDFAnal Chim Acta
February 2021
Paper-based analytical devices possess desirable properties such as low cost, convenient production, and rapid output. These advantages over conventional analytical devices have attracted tremendous attention in recent years, and an abundance of fabrication techniques have been achieved with different designs. Related approaches are adopted by scientists and engineers from different research fields to create practical devices tailored for various applications.
View Article and Find Full Text PDFWe design and build a horizontal-type aperture based scanning near-field optical microscope (a-SNOM) with superior mechanical stability toward high-resolution and non-destructive topographic and optical imaging. We adopt the torsional mode in AFM (atomic force microscopy) operation to achieve a better force sensitivity and a higher topographic resolution when using pyramidal a-SNOM tips. The performance and stability of the AFM are evaluated through single-walled carbon nanotube and poly(3-hexyl-thiophene) nanowire samples.
View Article and Find Full Text PDFThe pyrophosphate ion (PO, PPi) plays a critical role in various biological processes and acts as an essential indicator for physiological mechanism investigations and disease control monitoring. However, most of the currently available approaches for PPi species detection for practical usage still lack appropriate indicator generation, straightforward detection requirements, and operation convenience. In this study, a highly sensitive and selective PPi detection approach via the use of nanozymatic carbon dots (CDs) is introduced.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2019
Flexible pressure sensors have attracted increasing interest because of their potential applications on wearable sensing devices for human-machine interface connections, but challenges regarding material cost, fabrication robustness, signal transduction, sensitivity improvement, detection range, and operation convenience still need to be overcome. Herein, with a simple, low-cost, and scalable approach, a flexible and wearable pressure-sensing device fabricated by utilizing filter paper as the solid support, poly(3,4-ethylenedioxythiophene) to enhance conductivity, and silver nanoparticles to provide a rougher surface is introduced. Sandwiching and laminating composite material layers with two thermoplastic polypropylene films lead to robust integration of sensing devices, where assembling four layers of composite materials results in the best sensitivity toward applied pressure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2018
Local molecular environment governs material interface properties, especially the substrate's exposing behavior and overall functionality expression. Although current techniques can provide efficient surface property modification, challenges in molecule spatial distribution and composition controls limited the generation of homogeneous and finely tunable molecular environment. In this study, Au-thiolate rupturing operation in chemical lift-off lithography (CLL) is used to manipulate the substrate interface molecular environment.
View Article and Find Full Text PDFAiming to overcome the obstacles of power supply requirement and chip usefulness in practice, a low-cost and convenient portable electrochemical sensing device is introduced for the first time, featuring bipolar electrode system, LED read-out, laminated paper-based devices, and low-voltage button cells. The electric circuits of this practical device are constructed on laminating films with copper and conductive carbon tapes, and the reservoirs facilitating chemical reactions are made with chromatography paper. The device is sensitive to electrochemical responses, validated by the demonstrative hydrogen peroxide and enzyme-assisted glucose detection.
View Article and Find Full Text PDFChem Commun (Camb)
April 2018
Programmable surface-patterned functional DNA density is achieved via manipulation of molecular-level defects through chemical lift-off lithography. Artificial SAM defects are well-tunable by a contact-induced reaction, enabling molecular environment guidance and DNA insertion to be spatially and quantitatively addressable. This straightforward molecular density control creates an advanced avenue toward fabricating multiplexed bioactive substrates.
View Article and Find Full Text PDFBeilstein J Nanotechnol
January 2018
The creation of bioactive substrates requires an appropriate interface molecular environment control and adequate biological species recognition with minimum nonspecific attachment. Herein, a straightforward approach utilizing chemical lift-off lithography to create a diluted self-assembled monolayer matrix for anchoring diverse biological probes is introduced. The strategy encompasses convenient operation, well-tunable pattern feature and size, large-area fabrication, high resolution and fidelity control, and the ability to functionalize versatile bioarrays.
View Article and Find Full Text PDFPaper-based analytical devices are an emerging class of lightweight and simple-to-use analytical platform. However, challenges such as instrumental requirements and chemical reagents durability, represent a barrier for less-developed countries and markets. Herein, we report an advanced laminated device using red emitting copper nanocluster and RGB digital analysis for signal improvement.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2018
Carbon dots are admirable fluorescent nanomaterials due to their low cost, high photostability, excellent biocompatibility, and environmental friendliness. Most conventional carbon dot fabrication approaches produce single-colored fluorescent material in the preparation process; different methods are therefore required to synthesize distinct carbon dots for specific optical applications. In this study, carbon dots carrying different emission colors are prepared through a one-step refluxing process.
View Article and Find Full Text PDFPolymer film incorporated paper-based devices show advantages in simplicity and rugged backing. However, their applications are restricted by the high fluorescence background interference of conventional laminating pouches. Herein, we report a straightforward approach for minimal fluorescence background device fabrication, in which filter paper was shaped and laminated in between two biaxially oriented polypropylene (OPP) and polyvinyl butyral (PVB) composite films.
View Article and Find Full Text PDFWe discuss the origins, motivation, invention, development, applications, and future of chemical lift-off lithography, in which a specified pattern of a self-assembled monolayer is removed, i.e., lifted off, using a reactive, patterned stamp that is brought into contact with the monolayer.
View Article and Find Full Text PDFNucleotide arrays require controlled surface densities and minimal nucleotide-substrate interactions to enable highly specific and efficient recognition by corresponding targets. We investigated chemical lift-off lithography with hydroxyl- and oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers as a means to produce substrates optimized for tethered DNA insertion into post-lift-off regions. Residual alkanethiols in the patterned regions after lift-off lithography enabled the formation of patterned DNA monolayers that favored hybridization with target DNA.
View Article and Find Full Text PDFHerein, we describe a novel colloidal lithographic strategy for the stepwise patterning of planar substrates with numerous complex and unique designs. In conjunction with colloidal self-assembly, imprint molding, and capillary force lithography, reactive ion etching was used to create complex libraries of nanoscale features. This combinatorial strategy affords the ability to develop an exponentially increasing number of two-dimensional nanoscale patterns with each sequential step in the process.
View Article and Find Full Text PDFSelf-assembled monolayers are a unique class of nanostructured materials, with properties determined by their molecular lattice structures, as well as the interfaces with their substrates and environments. As with other nanostructured materials, defects and dimensionality play important roles in the physical, chemical, and biological properties of the monolayers. In this review, we discuss monolayer structures ranging from surfaces (two-dimensional) down to single molecules (zero-dimensional), with a focus on applications of each type of structure, and on techniques that enable characterization of monolayer physical properties down to the single-molecule scale.
View Article and Find Full Text PDF