The impact of additives on the nanoscale structures of spin-cast polymer composite films, particularly in polymer solar cells, is a topic of significant interest. This study focuses on the blend film comprising poly(thieno[3,4-]thio-phene--benzodi-thio-phene) (PTB7) and [6,6]-phenyl-C-butyric acid methyl ester (PCBM), exploring how additives like 1,8-di-iodo-octane (DIO) influence the film structures spin-cast from chloro-benzene solution. Combined results of specular X-ray and neutron reflectivity, grazing-incidence small- and wide-angle X-ray scattering (GISAXS and GIWAXS), and X-ray photoelectron spectroscopy indicate that DIO could significantly enhance the dispersion of PCBM and reduce composition inhomogeneity in the film.
View Article and Find Full Text PDFOrganic A'-site ligand structure plays a crucial role in the crystal growth of 2D perovskites, but the underlying mechanism has not been adequately understood. This problem is tackled by studying the influence of two isomeric A'-site ligands, linear-shaped n-butylammonium (n-BA ) and branched iso-butylammonium (iso-BA ), on 2D perovskites from precursor to device, with a combination of in situ grazing-incidence wide-angle X-ray scattering and density functional theory. It is found that branched iso-BA , due to the lower aggregation enthalpies, tends to form large-size clusters in the precursor solution, which can act as pre-nucleation sites to expedite the crystallization of vertically oriented 2D perovskites.
View Article and Find Full Text PDFThe device efficiency of :-based nonfullerene organic solar cells is fast advanced recently. To maintain organic solar cells (OSCs) with high power conversion efficiency over 16% in long-term operation, however, remains a challenge. Here, a novel non-volatile additive, an open-cage [60]fullerene (), is incorporated into -based OSCs for high-performance with high durability.
View Article and Find Full Text PDFCathode buffer layers (CBLs) can effectively further the efficiency of polymer solar cells (PSCs), after optimization of the active layer. Hidden between the active layer and cathode of the inverted PSC device configuration is the critical yet often unattended vertical diffusion of the active layer components across CBL. Here, a novel methodology of contrast variation with neutron and anomalous X-ray reflectivity to map the multicomponent depth compositions of inverted PSCs, covering from the active layer surface down to the bottom of the ZnO-based CBL, is developed.
View Article and Find Full Text PDFHepatic stellate cells (HSCs) are the main extracellular matrix (ECM)‑producing cells in liver fibrosis. Activated HSCs stimulate the proliferation and migration of hepatocellular carcinoma (HCC) cells. Cysteine‑rich 61 (CCN1/Cyr61) is an ECM protein.
View Article and Find Full Text PDFUsing simultaneously scanning small-angle X-ray scattering (SAXS) and UV-vis absorption with integrated online size exclusion chromatography, supplemental with molecular dynamics simulations, we unveil the long-postulated global structure evolution of a model multidomain protein bovine serum albumin (BSA) during acid-induced unfolding. Our results differentiate three global packing structures of the three molten globule domains of BSA, forming three intermediates I, I, and E along the unfolding pathway. The I-I transition, overlooked in all previous studies, involves mainly coordinated reorientations across interconnected molten globule subdomains, and the transition activates a critical pivot domain opening of the protein for entering into the E form, with an unexpectedly large unfolding free energy change of -9.
View Article and Find Full Text PDFBackground: Some bovine hides produce poor quality leather, termed loose leather. The structural characteristics of hides and the intermediate processed stages that lead to loose leather are not well understood. In the present study, synchrotron-based small angle X-ray scattering (SAXS) is used to investigate collagen fibril orientation at the different stages of processing (i.
View Article and Find Full Text PDFMelting of native tapioca starch granules in aqueous pastes upon heating is observed in situ using simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS) and solution viscometry. Correlated structure and viscosity changes suggest closely associated amylose and amylopectin chains in the semicrystalline layers, and the release of amylose chains for enhanced solution viscosity occurs largely after melting of the semicrystalline structure. Before melting, WAXS results reveal mixed crystals of A- and B-types (∼4:1 by weight), whereas SAXS results indicate that the semicrystalline layers are composed of lamellar blocklets of ca 43 nm domain size, with polydisperse crystalline (≃7.
View Article and Find Full Text PDFImatinib Mesylate is widely used for the treatment of chronic myelogenous leukaemia (CML), and its effects on CML cells are influenced by several signalling proteins. The research is aimed at determining whether Wnt5a affects the effects of Imatinib Mesylate against BCR-ABL positive CML cells (K562 cells and KU812 cells) and which signalling proteins are involved in. The results showed that Wnt5a augmented the effects of Imatinib Mesylate on inhibiting CML cells proliferation and inducing apoptosis in vitro; Wnt5a enhanced the inhibition effect of Imatinib Mesylate on the growth of K562 cells xenograft tumour in an animal model.
View Article and Find Full Text PDFWe simultaneously employed grazing incidence small-angle and wide-angle X-ray scattering (GISAXS and GIWAXS) techniques to quantitatively study the structural evolution and kinetic behavior of poly(3-hexylthiophene) (P3HT) crystallization, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) aggregation and amorphous P3HT/PCBM domains from a bulk heterojunction (BHJ) to a thermally unstable structure. The independent phase separation regimes on the nanoscale (∼10 nm), mesoscale (∼100 nm) and macroscale (∼μm) are revealed for the first time. Bis-PCBM molecules as inhibitors incorporated into the P3HT/PCBM blend films were adopted as a case study of a control strategy for improving the thermal stability of P3HT/PCBM solar cell.
View Article and Find Full Text PDFγ-catenin plays different roles in different types of tumors, and its role in chronic myeloid leukemia (CML) cells has yet to be identified. In our study, two CML cell lines (K562, KU812) had higher γ-catenin expression levels compared to five types of BCR-ABL-negative leukemia cells. Knockdown of the expression of BCR-ABL resulted in downregulation of γ-catenin.
View Article and Find Full Text PDFAbnormal activation of the canonical Wnt signaling pathway has been implicated in carcinogenesis. Transcription of Wnt target genes is regulated by nuclear β-catenin, whose over-expression is observed in Hepatocellular Carcinoma (HCC) tissue. Cyr61, a member of the CCN complex family of multifunctional proteins, is also found over-expressed in many types of tumor and plays dramatically different roles in tumorigenesis.
View Article and Find Full Text PDFConcomitant development of [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) aggregation and poly(3-hexylthiophene) (P3HT) crystallization in bulk heterojunction (BHJ) thin-film (ca. 85 nm) solar cells has been revealed using simultaneous grazing-incidence small-/wide-angle X-ray scattering (GISAXS/GIWAXS). With enhanced time and spatial resolutions (5 s/frame; minimum q ≈ 0.
View Article and Find Full Text PDF