Publications by authors named "Wei-Qiu Liu"

Biodegradation stands as an eco-friendly and effective approach for organic contaminant remediation. However, research on microorganisms degrading sodium benzoate contaminants in extreme environments remains limited. In this study, we report to display the isolation of a novel hot spring enriched cultures with sodium benzoate (400 mg/L) as the sole carbon source.

View Article and Find Full Text PDF

Although it is well documented that mountains tend to exhibit high biodiversity, how geological processes affect the assemblage of montane floras is a matter of ongoing research. Here, we explore landform-specific differences among montane floras based on a dataset comprising 17,576 angiosperm species representing 140 Chinese mountain floras, which we define as the collection of all angiosperm species growing on a specific mountain. Our results show that igneous bedrock (granitic and karst-granitic landforms) is correlated with higher species richness and phylogenetic overdispersion, while the opposite is true for sedimentary bedrock (karst, Danxia, and desert landforms), which is correlated with phylogenetic clustering.

View Article and Find Full Text PDF

A Gram-stain-negative, non-endospore-forming, motile, short rod-shaped strain, designated SYSU G07232, was isolated from a hot spring microbial mat, sampled from Rehai National Park, Tengchong, Yunnan Province, south-western China. Strain SYSU G07232 grew at 25-50 °C (optimum, 37 °C), at pH 5.5-9.

View Article and Find Full Text PDF

Global environmental changes are leading to an increase in localized abnormally low temperatures and increasing nitrogen (N) deposition is a phenomenon recognized worldwide. Both low temperature stress (LTS) and excess N induce oxidative stress in plants, and excess N also reduces their resistance to LTS. Mosses are primitive plants that are generally more sensitive to alterations in environmental factors than vascular species.

View Article and Find Full Text PDF

Nitrogen (N) deposition levels and frequencies of extreme drought events are increasing globally. In efforts to improve understanding of plants' responses to associated stresses, we have investigated responses of mosses to drought under elevated nitrogen conditions. More specifically, we exposed subsp.

View Article and Find Full Text PDF

We tested antioxidant responses of the green microalga Pseudokirchneriella subcapitata exposed to different concentrations of the three antibiotics erythromycin (ETM), ciprofloxacin (CPF) and sulfamethoxazole (SMZ). Measurements included the level of lipid peroxidation, the total antioxidative capacity and three major antioxidant mechanisms: the ascorbate-glutathione cycle, the xanthophyll cycle and the enzyme activities of catalase (CAT), superoxide dismutase (SOD), guaiacol glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Three antibiotics significantly affect the antioxidant system of P.

View Article and Find Full Text PDF

Microorganisms are important in soil development, inputs and biogeochemical cycling of nutrients and organic matter during early stages of ecosystem development, but little is known about their diversity, distribution, and function in relation to the chemical and physical changes associated with the progress of succession. In this study, we characterized the community structure and activity of nitrogen-fixing microbes during primary succession on a copper tailings. Terminal fragment length polymorphism (T-RFLP) and clone sequencing of nifH genes indicated that different N(2) -fixing communities developed under primary succession.

View Article and Find Full Text PDF

The effects of three antibiotics (erythromycin, ciprofloxacin and sulfamethoxazole) on photosynthesis process of Selenastrum capricornutum were investigated by determining a battery of parameters including photosynthetic rate, chlorophyll fluorescence, Hill reaction, and ribulose-1.5-bisphosphate carboxylase activity, etc. The results indicated that three antibiotics could significantly inhibit the physiological progress including primary photochemistry, electron transport, photophosphorylation and carbon assimilation.

View Article and Find Full Text PDF