Publications by authors named "Wei-Qiang Liao"

Human hearing cannot sensitively detect sounds below 100 Hz, which can affect the physical well-being and lead to dizziness, headaches, and nausea. Piezoelectric acoustic sensors still lack sensitivity to low-frequency sounds owing to the low piezoelectric coefficient or high elastic modulus of materials. The low elastic modulus and substantial piezoelectric coefficient of molecular ferroelectric materials make them excellent candidates for acoustic sensors.

View Article and Find Full Text PDF

Organic-inorganic hybrid metal halides (OIMHs) with ferroelastic phase transition properties have recently attracted great attention due to their widespread application prospects in the fields of energy storage, sensors, switches, . However, most of the hybrid ferroelastics exhibit phase transition points () far beyond room temperature, which may limit their applications in mechanical switches and energy storage for daily working requirements. Herein, we synthesized a new zinc halide OIMH ferroelastic (,)-[BPHD]ZnBr (BPHD = 1,6-bis(piperidine-1-yl) hexa-2,4-diene diamide), which experiences a 2/1̄ type paraelastic-ferroelastic phase transition at a near-room-temperature of 285 K.

View Article and Find Full Text PDF

Ferroelectrics as emerging and attractive catalysts have shown tremendous potential for applications including wastewater treatment, hydrogen production, nitrogen fixation, and organic synthesis, etc. In this study, we demonstrate that molecular ferroelectric crystal TMCM-CdCl (TMCM = trimethylchloromethylammonium) with multiaxial ferroelectricity and superior piezoelectricity has an effective catalytic activity on the direct construction of the pharmacologically important substituted quinoline derivatives via one-pot [3 + 2 + 1] annulation of anilines and terminal alkynes by using N,N-dimethylformamide (DMF) as the carbon source. The recrystallized TMCM-CdCl crystals from DMF remain well ferroelectricity and piezoelectricity.

View Article and Find Full Text PDF

Spin-crossover (SCO) ferroelectrics with dual-function switches have attracted great attention for significant magnetoelectric application prospects. However, the multiferroic crystals with SCO features have rarely been reported. Herein, a molecular multiferroic Fe(II) crystalline complex [Fe(C-F-pbh)] (1-F, C-F-pbh = (1Z,N'E)-3-F-4-(octyloxy)-N'-(pyridin-2-ylmethylene)-benzo-hydrazonate) showing the coexistence of ferroelectricity, ferroelasticity, and SCO behavior is presented for the first time.

View Article and Find Full Text PDF

Here, we synthesized a series of cholesteryl-based compounds, whose phases and their transformation can be modulated by temperature and the chain length of the fluoroalkyl moieties. To our knowledge, this is the first time that the phase transition could be modulated with perfluoroalkyl tail engineering in organic single-component ferroelectric crystals.

View Article and Find Full Text PDF

Thermally triggered spatial symmetry breaking in traditional ferroelectrics has been extensively studied for manipulation of the ferroelectricity. However, photoinduced molecular orbital breaking, which is promising for optical control of ferroelectric polarization, has been rarely explored. Herein, for the first time, we synthesized a homochiral fulgide organic ferroelectric crystal (E)-(R)-3-methyl-3-cyclohexylidene-4-(diphenylmethylene)dihydro-2,5-furandione (1), which exhibits both ferroelectricity and photoisomerization.

View Article and Find Full Text PDF

Fullerenes offer versatile functionalities and are promising materials for a widespread range of applications from biomedicine and energy to electronics. Great efforts have been made to manipulate the symmetries of fullerene and its derivatives for studying material properties and novel effects, such as ferroelectricity with polar symmetry; however, no documentary report has been obtained to realize their ferroelectricity. Here, for the first time, we demonstrated clear ferroelectricity in a fullerene adduct formed by C and S.

View Article and Find Full Text PDF
Article Synopsis
  • * It introduces a novel mechanism involving dual breaking of molecular orbitals and spatial symmetry that allows for light-induced polarization switching, showing a reversible transformation between different configurations of electron orbitals.
  • * The findings suggest that this intersection of symmetry and orbital breaking could enhance applications in data encryption and anti-counterfeiting technologies.
View Article and Find Full Text PDF

Bismuth(III) iodide perovskites have attracted great attention as lead-free hybrid semiconductors, but they mainly show zero- and one-dimensional structures. Herein, we report the first two-dimensional chiral perovskite-like bismuth(III) iodide hybrid [()-3-aminopyrrolidinium I]BiI () with a high phase transition temperature of 408.8 K, higher than most of the reported chiral lead-free hybrid semiconductors.

View Article and Find Full Text PDF

Inorganic ferroelectrics have long dominated research and applications, taking advantage of high piezoelectric performance in bulk polycrystalline ceramic forms. Molecular ferroelectrics have attracted growing interest because of their environmental friendliness, easy processing, lightweight, and good biocompatibility, while realizing the considerable piezoelectricity in their bulk polycrystalline forms remains a great challenge. Herein, for the first time, through ring enlargement, a molecular ferroelectric 1-azabicyclo[3.

View Article and Find Full Text PDF

Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, R -tert-butanesulfinamide (R -tBuSA) and S -tert-butanesulfinamide (S -tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals.

View Article and Find Full Text PDF

Ferroelectricity has been separately found in numerous solid and liquid crystal materials since its first discovery in 1920. However, a single material with biferroelectricity existing in both solid and liquid crystal phases is very rare, and the regulation of biferroelectricity has never been studied. Here, solid-liquid crystal biphasic ferroelectrics, cholestanyl 4-X-benzoate (4X-CB, X = Cl, Br, and I), which exhibits biferroelectricity in both the solid and liquid crystal phases, is presented.

View Article and Find Full Text PDF

Ferroelectric materials are a special type of polar substances, including solids or liquid crystals. However, obtaining a material to be ferroelectric in both its solid crystal (SC) and liquid crystal (LC) phases is a great challenge. Moreover, although cholesteric LCs inherently possess the advantage of high fluidity, their ferroelectricity remains unknown.

View Article and Find Full Text PDF

Metal-free perovskites with light weight and eco-friendly processability have received great interest in recent years due to their superior physical features in ferroelectrics, X-ray detection, and optoelectronics. The famous metal-free perovskite ferroelectric MDABCO-NH-I (MDABCO = -methyl-'-diazabicyclo[2.2.

View Article and Find Full Text PDF

Chiral organic-inorganic hybrid semiconductors (COIHSs) dominated by lead halides have recently gained tremendous interest. Here, we report a lead-free photoluminescent COIHS [-3-hydroxylpiperidinium]SbCl with a bandgap of 3.14 eV.

View Article and Find Full Text PDF

Piezoelectric materials that enable electromechanical conversion have great application value in actuators, transducers, sensors, and energy harvesters. Large piezoelectric () and piezoelectric voltage () coefficients are highly desired and critical to their practical applications. However, obtaining a material with simultaneously large and has long been a huge challenge.

View Article and Find Full Text PDF

Molecular ferroelectrics with large piezoelectric responses have long been sought for their advantages of light weight, mechanical flexibility, and easy preparation, in contrast to the widely used inorganic counterparts. Representatively, a molecular ferroelectric crystal [MeNCHCl]CdCl (TMCM-CdCl) has been found to show a large piezoelectric coefficient of 220 pC/N exceeding that of BaTiO (You , , 306-309). However, although the of molecular ferroelectrics has achieved great progress, their electromechanical coupling factor , which is essential for various piezoelectric applications, including ultrasonic transducers and actuators, was rarely explored and is far below the level of inorganic ferroelectrics.

View Article and Find Full Text PDF

Ferroelectricity, existing in either solid crystals or liquid crystals, gained widespread attention from science and industry for over a century. However, ferroelectricity has never been observed in both solid and liquid crystal phases of a material simultaneously. Inorganic ferroelectrics that dominate the market do not have liquid crystal phases because of their completely rigid structure caused by intrinsic chemical bonds.

View Article and Find Full Text PDF

Organic single-component ferroelectrics, as an important class of metal-free ferroelectrics, are highly desirable because of their easy processing, mechanical flexibility, and biocompatibility. However, although nearly 50 years have passed since the discovery of photochromism in azobenzene-doped cholesteric liquid crystals, ferroelectricity has never been found in azobenzene-based crystals. Here, we use an amino group to substitute a fluorine atom of 2,2',4,4',6,6'-hexafluoroazobenzene, which successfully introduces ferroelectricity into 2-amino-2',4,4',6,6'-pentafluoroazobenzene (APFA).

View Article and Find Full Text PDF

Organic-inorganic hybrid perovskites (OIHPs) have gained tremendous interest for their rich functional properties. However, the coexistence of more than one of ferroelectricity, ferromagnetism and ferroelasticity has been rarely found in OIHPs. Herein, we report a two-dimensional Cr -based OIHP, [3,3-difluorocyclobutylammonium] CrCl ([DFCBA] CrCl ), which shows both ferroelectricity and ferromagnetism.

View Article and Find Full Text PDF

Shape memory alloys have been used extensively in actuators, couplings, medical guide wires, and smart devices, because of their unique shape memory effect and superelasticity triggered by the reversible martensitic phase transformations. For ferroic materials, however, almost no memory effects have been found for their ferroic domains after reversible phase transformations. Here, we present a pair of single-component organic enantiomorphic ferroelectric/ferroelastic crystals, (R)- and (S)-N-3,5-di-tert-butylsalicylidene-1-(1-naphthyl)ethylamine SA-NPh-(R) and SA-NPh-(S).

View Article and Find Full Text PDF

A four-ingredient polymer chain has record-breaking piezoelectric capability.

View Article and Find Full Text PDF

A ferroelectric/ferroelastic is a material whose spontaneous polarization/strain can be switched by applying an external electric field/mechanical stress. However, the optical control of spontaneous polarization/strain remains relatively unexplored in crystalline materials, although photoirradiation stands out as a nondestructive, noncontact, and remote-controlled stimulus beyond stress or electric field. Here, we present two new organic single-component homochiral photochromic multiferroics, ()- and ()--3,5-di--butylsalicylidene-1-4-bromophenylethylamine (SA-Ph-Br() and SA-Ph-Br()), which show a full ferroelectric/ferroelastic phase transition of 222F2 type at 336 K.

View Article and Find Full Text PDF

Ferroelectrics usually exhibit temperature-triggered structural changes, which play crucial roles in controlling their physical properties. However, although light is very striking as a non-contact, non-destructive, and remotely controlled external stimuli, ferroelectric crystals with light-triggered structural changes are very rare, which holds promise for optical control of ferroelectric properties. Here, an organic molecular ferroelectric, N-salicylidene-2,3,4,5,6-pentafluoroaniline (SA-PFA), which shows light-triggered structural change of reversible photoisomerization between cis-enol and trans-keto configuration is reported.

View Article and Find Full Text PDF

With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering.

View Article and Find Full Text PDF