Publications by authors named "Wei-Lin Chien"

PTEN-induced putative kinase 1 (PINK1) is an integral protein in the mitochondrial membrane and maintains mitochondrial fidelity. Pathogenic mutations in PINK1 have been identified as a cause of early-onset autosomal recessive familial Parkinson's disease (PD). The ubiquitin proteasome pathway is associated with neurodegenerative diseases.

View Article and Find Full Text PDF

Mutation in the human PTEN-induced protein kinase 1 (PINK1) gene is responsible for the second most common form of recessive Parkinson disease (PD). We have identified a single heterozygous PINK1 mutation, P209A, from a cohort of 68 patients with early onset PD. From age 31, this patient developed an asymmetric bradykinesia with rigidity that was L-DOPA responsive.

View Article and Find Full Text PDF

Acetazolamide (AZ) is an carbonic anhydrase inhibitor, which has been used in the treatment of seizures, mountain sickness and glaucoma. Memory impairment by AZ has been reported in patient interviews; however, the related mechanism is unclear. We applied two fear conditioning paradigms, shuttle avoidance and passive avoidance, in both rats and mice to investigate this clinical anecdote.

View Article and Find Full Text PDF

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Mutation in the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) gene causes an autosomal recessive form of PD. However, the etiology related to PINK1 is still not clear.

View Article and Find Full Text PDF

TDP-43 is a multifunctional DNA/RNA-binding factor that has been implicated in the regulation of neuronal plasticity. TDP-43 has also been identified as the major constituent of the neuronal cytoplasmic inclusions (NCIs) that are characteristic of a range of neurodegenerative diseases, including the frontotemporal lobar degeneration with ubiquitin(+) inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). We have generated a FTLD-U mouse model (CaMKII-TDP-43 Tg) in which TDP-43 is transgenically overexpressed in the forebrain resulting in phenotypic characteristics mimicking those of FTLD-U.

View Article and Find Full Text PDF

Although much has been learned about the role of the amygdala in Pavlovian fear conditioning, relatively little is known about the signaling pathway involved in the acquisition of an active avoidance reaction. The aim of this study is to investigate the potentiating effects of the NO-guanylate cyclase activator YC-1 on learning and memory of shuttle avoidance test in rats. YC-1 enhanced the induction of long-term potentiation (LTP) in amygdala through NO-cGMP-PKG-ERK pathway and the increase of BDNF expression.

View Article and Find Full Text PDF

Collapsing response mediator protein-1 (CRMP-1) was initially identified in brain and has been implicated in plexin-dependent neuronal function. The high amino acid sequence identity among the five CRMPs has hindered determination of the functions of each individual CRMP. We generated viable and fertile CRMP-1 knock-out (CRMP-1(-/-)) mice with no evidence of gross abnormality in the major organs.

View Article and Find Full Text PDF

Memory is one of the most fundamental mental processes, and various approaches have been used to understand the mechanisms underlying this process. Nitric oxide (NO), cGMP and protein kinase G (PKG) are involved in the modulation of synaptic plasticity in various brain regions. YC-1, which is a benzylindazole derivative, greatly potentiated the response of soluble guanylate cyclase to NO (up to several hundreds fold).

View Article and Find Full Text PDF

Nitric oxide (NO) is known to affect synaptic plasticity in various regions of the brain via the cGMP-cGMP-dependent protein kinase (PKG) pathway. We found that a novel compound 3-(5-hydroxymethyl-2-furyl)-1-benzyl-indazole (YC-1), a drug known to modulate the response of soluble guanylyl cyclase to NO, greatly potentiates long-term potentiation (LTP). This compound markedly enhanced the induction of LTP in rat hippocampal and amygdala slices by weak tetanic stimulation.

View Article and Find Full Text PDF